First Responder Beware®
Electrical Safety Presenter's Guide

Table of Contents

Introduction ... 2
Section One: Know Your Audience 2
Section Two: Electricity Basics 2
 What Is Electricity? .. 2
 The Electricity Distribution System 3
Section Three: Plan Your Session 3
 Know Your Material .. 3
 Make the Material Relevant ... 3
 Tailor the Session to the Presentation Space, Audience Size, and Allotted Time 4
Section Four: Your Five-Step Presentation for Survival 4
 1) Advertise the meeting .. 4
 2) Pass a sign-in sheet .. 4
 3) Offer an overview .. 4
 4) Present the First Responder Beware materials 4
 5) Discussion and Simulation .. 5
Section Five: Suggested Simulations 5
 Tabletop Simulations .. 5
 Role-Play Simulations .. 6
Section Six: First Responder Beware Electrical Safety Quiz 6
 Electrical Safety Quiz Answers ... 6
Introduction
The *First Responder Beware* presentation from Southern California Edison is designed to provide firefighters, police, EMTs, and paramedics with the information they need to recognize and work safely around electrical infrastructure while responding to emergencies.

This presentation guide will help you make the most of the *First Responder Beware* program. It contains six sections:

Know Your Audience. An overview of first responders’ learning preferences.

Electricity Basics. Information on how electricity works.

Plan Your Session. Tips for preparing an effective presentation session.

Your Five-Step Presentation for Survival. Step-by-step presentation guidance.

Suggested Simulations. Activities to help reinforce safety procedures.

Before and After Quiz. Reproducible electrical safety quiz to help presenters and participants evaluate the program’s impact. Answer sheets are provided.

Section One: Know Your Audience
Understanding how first responders learn best will help you tailor your presentation to this unique audience. Take into consideration the following learning preferences:

First responders tend to be action-oriented learners who do best when given an opportunity to practice and repeat recommended behaviors, and they favor a hands-on approach.

First responders benefit from significant discussion time during the presentation, including opportunities to relate new information to prior experiences and events.

First responders are very focused on core priorities: their own survival, safe and timely rescue of incident victims, and protection of property.

First responders respect authority and expertise. Instructors should have a solid command of the topic and be well organized.

First responders are conscientious learners. If the material is presented as being important to their work and lives, they will be a responsive, eager, and respectful audience.

First responders prefer practical (rather than theoretical) information. Keep the focus on real-life situations.

Section Two: Electricity Basics
This section will help you answer questions about electricity from session participants.

What Is Electricity?
Electrical results from the flow of electrons between atoms that occurs when atoms carry different charges. Electrons are negatively charged, and flow to positively charged atoms until the charge is level or neutral.

- The flow of electrons is called **current**.
- Current is measured in **amperes**, or **amps** for short.
- The force propelling the flow of electrons is measured in **voltage**, or **volts** for short.
- When an object or substance limits the flow of current, this property is called **resistance**.

Resistance is measured in **ohms**.
■ Materials with a high level of resistance are called **insulators**. Common insulators include porcelain, plastics, and air. These materials do not allow electricity to pass through them easily; however, even insulators can conduct electricity under certain conditions.

■ Materials with a low level of resistance are called **conductors**. Common conductors include water, most metals, and the human body. Electricity can pass easily through these materials under almost all conditions.

The Electricity Distribution System

Most of the nation's electricity is generated at power plants. A thick coil of wire spins inside giant magnets at the plant, moving the electrons in the wire and making electricity flow.

Wires on tall transmission towers carry high-voltage electricity from power plants to substations, where the voltage is typically reduced. From substations, electricity travels on smaller wires that branch out down streets, either overhead or underground.

Overhead and underground power lines carry electricity to transformers on poles or in underground structures, where the voltage is reduced again to a level that is safe for typical use. From transformers, electricity travels into buildings through service wires. These wires connect to the meter panel, which is connected to all the wires that energize wall outlets and switches.

Note that electric-line workers receive extensive training and are experts in handling power lines. They also have special equipment for handling electric infrastructure. First responders should understand that even with training, their understanding of electricity is basic, and their equipment, even if it appears insulated, is not designed or tested to prevent electric shock.

Section Three: Plan Your Session

A well-organized, informed instructor will gain participants' respect and be far more effective. Below are some recommendations to help you prepare for the electrical safety presentation with confidence.

Know Your Material

Always preview the materials before showing them to session participants. Gathering information in advance can be useful and make presentation materials more relevant. Review all the materials and rehearse your presentation well before the session.

Make the Material Relevant

Identify the key electrical infrastructure that first responders in your presentation session may encounter when responding to emergencies, and focus the group’s attention on these topics during the presentation:

- **What emergency situations** bring them close to downed power lines?
- **What type of long or tall equipment do they use** that might come in contact with overhead power lines?
- **Where are the electric substations** in your area?
- **What electrical hazards have participants encountered** in the past? Recently?
- **What experience do participants have with electric shock victims** and how much do they know about the severity, nature, and proper response to shock and burn injuries?
Tailor the Session to the Presentation Space, Audience Size, and Allotted Time

Consider the size of the presentation space and audience. A large group will require different media than will a smaller one. If the room size is very large for the group, be sure it is arranged as intimately as possible to keep all participants involved.

Remember that first responders are hands-on, action-oriented learners. The session will need to include opportunities to simulate recommended practices and to discuss potential applications of the material. Room size and arrangement can have a measurable impact on the participation level. Consider:

Will all materials be visible to all participants or do you need additional space or equipment?

Are the seats arranged in a way that will foster discussion?

Is there adequate space for participants to conduct simulations?

Is there adequate lighting for all participants to see the instructor and materials, and to take notes if necessary?

Will everyone be able to hear?

Just as room and audience size can impact the effectiveness of training, so can session time. No one learns well sitting for long periods. On the other hand, cramming too much information into a short session can reduce retention. Plan your session to allow time for discussions and simulations.

If there is not time for all the materials, which ones will be most effective for these participants?

Section Four: Your Five-Step Presentation for Survival

Follow these steps for a high-impact meeting that will keep participants involved and reinforce essential safety information:

1) Advertise the meeting
Post a notice well in advance of the meeting in a highly visible location.

2) Pass a sign-in sheet
Keep attendance records of all safety meetings, because, some day, you may have to show who attended the meeting, what the session covered, and when it was held.

3) Offer an overview
Tell participants what you will cover in the meeting and what you hope they will learn. This is a good time to convey the importance of this information—that it can help protect first responders, incident victims, and bystanders from electricity-related injury or death.

4) Present the First Responder Beware materials
Discuss the electrical safety information in these materials and what electricity-related emergencies participants might encounter. Ask participants to review their notes on the materials periodically to refresh their memory of the vital safety tips.

These materials use different types of first responders to exemplify different situations. You might preface them by pointing out that first responders of any discipline could be first on the scene in any emergency. Ask participants to pay special attention to how the information can be applied to their areas of expertise and emergencies they will encounter.
5) Discussion and Simulation
Participants will retain more information if they get involved in activities and discussions. Ideally, these exercises should be dispersed throughout the session. Here are some ideas:

Remind participants of the circumstances of any electricity-related emergencies in your region. Discuss how information in the materials is relevant.

Stress the importance of first responders keeping themselves, their tools, their equipment, and their vehicles at least 10 feet* from overhead power lines. Discuss how this rule particularly applies to them and situations they may encounter. Also discuss how downed lines require 30-foot to 100-foot clearances because wires can jump and move with wind or when sparking, and because the ground may be energized.

*Higher voltages require greater clearances; please check with Error! Reference source not found. if you are unsure about the clearances for various types of lines in your area.

Invite first responders to ask questions about the materials and the safety procedures they outline. If they have questions you can’t answer, research the answers yourself and give them that information as soon as possible.

Ask participants to brainstorm a list of key safety issues identified in the materials. Review these key issues, and discuss incidents that resulted when related safety precautions were ignored. What were the consequences?

Conduct tabletop simulations of various emergency scenarios. Use toy vehicles and figures to simulate appropriate actions: Where to park, how to manage aerial equipment, and where to place emergency personnel and bystanders.

Ask each participant to name one thing he or she learned from the materials or discussion that will help him/her be safer in the future.

Section Five: Suggested Simulations
Practice is essential to first responders’ survival, and the successful resolution of emergency situations. There is often little time to think, and proper habits can save lives.

Tabletop Simulations
The use of tabletop models provides opportunity for small-group collaborations and for simulating multiple scenarios. This approach can be adapted to various room conditions and time constraints. Use of toy figures and scale models allows simulations to be easily reset for repetition. Possible scenarios include the following:

Stage a car accident using toy cars and small wires. Have participants use toy figures to act out proper procedures, beginning with arrival on the scene through a rescue of the occupants in an energized vehicle.

Simulate conditions after a serious storm where lines have fallen. Use figures to practice proper procedures.

Practice where to park, how to manage aerial equipment around overhead lines, and where to place emergency personnel and bystanders using toy fire trucks, police cars, and ambulances.

Stage a variety of electrical infrastructure fires. These could involve a substation, a power line, or an underground vault. Ask participants to use figures to demonstrate appropriate actions.
Place model infrastructure items such as electric meters, service drops, etc. around structures, and ask participants to “arrive” at that scene and identify these pieces of electrical infrastructure.

Describe a scenario where a fire or other emergency is taking place. Have participants demonstrate proper procedures for different electrical infrastructure items.

Role-play Simulations

Role-play simulations are ideal for practicing first-aid techniques and detailed physical actions.

Practice proper jump-and-shuffle technique for exiting energized equipment. Jump clear of the vehicle or equipment with your feet together. Do not touch the equipment and the ground at the same time, or you will become electricity’s path to the ground and could be killed. Land with your feet together and shuffle away. Do not run or take long steps; if your legs bridge two areas of the ground with different voltage, electricity could travel up one leg and down the other. (This is because electricity spreads out in the ground with decreasing voltage from the point of contact.)

Place signs around the room that read “electric meter,” “downed wires,” and “overhead lines” and have participants enter the room. Time how long it takes them to locate the infrastructure and respond appropriately.

Practice responding to a vehicle/pole incident where downed power lines are known or suspected. Emphasize that participants should not contact the vehicle or the power line.

Remember that simulations are intended to reinforce proper behavior—not to call out or embarrass participants. Maintain a cooperative, supportive atmosphere at all times, and encourage participants to ask questions and provide feedback about how simulations might be most effective.

Section Six: First Responder Beware Electrical Safety Quiz

The quiz on the next page is intended to help instructors and participants gauge the program’s effectiveness. By administering it before beginning the presentation and then at the end of the session, presenters and participants alike can observe learning in action. The quiz is designed for two-sided photocopying.

Electrical Safety Quiz Answers

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. D</td>
<td>6. D</td>
</tr>
<tr>
<td>2. D</td>
<td>7. A</td>
</tr>
<tr>
<td>3. A</td>
<td>8. D</td>
</tr>
<tr>
<td>4. A</td>
<td>9. D</td>
</tr>
</tbody>
</table>
First Responder Beware
Electrical Safety Quiz

<table>
<thead>
<tr>
<th>BEFORE</th>
<th>QUESTIONS</th>
<th>AFTER</th>
</tr>
</thead>
</table>
| 1. Which of the following should you do when you suspect electrical infrastructure is involved in a fire? | A. Attempt to disconnect electrical service
B. Contact Error! Reference source not found.
C. Secure the area and evacuate bystanders
D. Both B and C | |
| 2. Which of your standard-issue protective gear will reliably insulate you against electric shock? | A. Your gloves
B. Your helmet
C. Your boots
D. None of the above | |
| 3. What is the *minimum* safe clearance between overhead power lines and emergency equipment? | A. 10 feet
B. 100 feet
C. 6 inches
D. 200 feet | |
| 4. True or false? You cannot always tell whether power lines or objects are energized. | A. True
B. False | |
| 5. How should you assist someone who is in a vehicle that is in contact with downed power lines? | A. Lift them out of the vehicle
B. If they are in imminent danger, instruct them to jump clear of the vehicle and shuffle away
C. Pull them out with a non-conductive rope
D. Encourage them to exit the vehicle normally | |
First Responder Beware Electrical Safety Quiz, p. 2

6. When is it appropriate to disconnect electrical service?
 A. When you can reach the electric meter
 B. When you can cut power lines
 C. When you can access a manhole
 D. Never

7. True or false? Your body can conduct electricity.
 A. True
 B. False

8. If your equipment contacts a power line and you are not in imminent danger, you should
 A. If possible, safely move the equipment away from the line
 B. Stay put and warn others to stay away
 C. Have someone contact Error! Reference source not found.
 D. All of the above

9. If a substation or transformer is burning, you should
 A. Enter the substation unescorted
 B. Evacuate the area
 C. Protect area exposures
 D. Both B and C

10. True or false? Burning electrical equipment is difficult to replace and should be saved.
 A. True
 B. False