


SCOPE 

DELIVERABLES 

     This report includes: 

• Models that predict the real-time likelihood of failure of over-head equipment on distribution segments 

• Probability of failure of distribution segments as a function of wind speed, and derived PSPS wind speed 
thresholds for each segment 

• A back-casting plan that seeks to understand how the new risk-informed methodology would perform 
against the current methodology in a de-activation scenario 

• Recommendations on next steps to improve the models 
 

    This report does not include: 

• Models that predict the likelihood of failure of underground equipment or equipment on transmission 

circuits 

• Results from a back-casting test that seeks to understand how the new risk-informed methodology would 
perform against the current methodology in an activation scenario 

 

GEOGRAPHY 

The territory included in this methodology covers areas within SCE’s service territory which have been categorized 

as high fire risk areas (HFRAs). 

APPLIED USES 

A model capable of predicting failures in real-time could be used as both a scenario planning tool as well as a 
mitigation planning tool. The segment-level model can be used, in conjunction with FPI as a risk proxy, to derive 
wind speed and wind gust thresholds for each segment (during the pre-planning phase prior to wildfire season, or 
during the event planning phase of any critical weather event). In addition, the segment-level model, as well as asset 
level models, can be used as predictive maintenance models to priority equipment, segments, and circuits for 
inspection and mitigation.  

 



Data Sources 

The following data sources used to train the failure-prediction models and to perform model evaluation were 
provided by SCE. These data sources are not publicly available and should be considered confidential. 

WEATHER DATA 

Source Downloadable from SCE SharePoint. 
Contact:  

  
  

 

Data file(s) 
• Fire potential index data (FPI.csv). 

• Ignition component data (IC_points.csv). 

• Wind speed and wind gust ML data (Wind_and_Gust_ML.csv). 

• Wind direction data (Direction_points.csv). 

• Precipitation data (Precip_points.csv). 

• Temperature data (T_points.csv). 

• Dew point depression data (DD_points.csv). 

• Relative humidity data (RH_points.csv). 

• Solar radiation data (ShortWaveFlux.csv). 

• Grid cell centroid data (grid_mask.csv). 

Last Updated Data Pull: September, 2023 

Frequency of Update Manual pull 

Historic Availability From the beginning of 2020 to the end of August 2023, except for Wind speed and wind gust ML 
data, which is only available to the end of 2022. 

 

These data sources contain weather data for HFRAs only. Weather data is provided for each grid cell (2km by 2km 

area) every hour, for 4048 grid cells that cover the HFRAs.  

All weather datasets are provided in “wide table” format, i.e., each row represents a specific date and time, and 

there are multiples columns that represent 4048 grid cells. We pivot and join all weather datasets to create a single 

dataset in “long table” format, where each row represents a specific grid cell at a specific date and time; and each 

column represents one weather data such as temperature or humidity. This weather dataset will be joined to asset 

data, such as pole and conductor, to learn how weather conditions impact assets. 

Since incidents (e.g., equipment failures) are reported by dates and locations, we cannot relate incidents to the 

hourly weather conditions. Therefore, we aggregate weather conditions by day, keeping the daily minimum, 

average, maximum, and standard deviation values for each weather condition. 

We relate weather conditions to poles and functional locations (FLOC) based on position (latitude, longitude). A pole 

or a FLOC is assigned to its nearest grid cell based on its distance to the grid cell centroid. Weather conditions of a 

pole or a FLOC are the same as weather conditions reported for its nearest grid cell. Identifying nearest grid cells is 

done as a spatial join using the geopandas python library.  

 



 

ASSET DATA 

Source Downloadable from SCE SharePoint. 
Contact:  

 for capacitor, transformer and switch data. 
 for pole data. 

 for SPIDA pole and conductor data. 
 

Data file(s) • Capacitor data (WORK_QUERY_FOR_STG_EQMASTER_Capacitors.csv). 

• Transformer data (xfmr_oh20230713.csv). 

• Switch data (oh_switch_07272023.csv). 

• Pole data: 

o Distribtuion HFRA Poles_08_21_23.xlsx. 

o WORK_QUERY_FOR__BIC_AZTDINP1300.csv. 

o WORK_QUERY_FOR__BIC_AZTDPOO2500.csv. 

• Conductor data (WORK_QUERY_FOR__BIC_AZTDPOO1400.csv) 

Last Updated Data Pull: August, 2023 

Frequency of Update Manual pull 

Historic Availability Unknown 

 

These data sources contain information about each overhead asset type, which includes: 

• Conductor (i.e., wire): contains static information such as wire distance, wire angle, wire slack and wire U-

size. This wire information is collected from SPIDA pole-wire data table. 

• Pole: contains static information such as pole’s longitude and latitude, primary or secondary, distribution 

or hybrid, pole height, pole class, pole sub-type, pole base, etc. This information is gathered from the asset 

database and SPIDA database. The dataset includes only distribution or hybrid poles in HFRA, and excludes 

all secondary poles. 

• Capacitor: contains static information such as manufacturer, primary voltage, system voltage, sub-type, 

switch-type, E-bank size, etc.  

• Transformer: contains static information such as manufacturer, class, sub-type, KVA, primary voltage, 

secondary voltage, system voltage, etc.  

• Switch: contains static information such as manufacturer, type, switch type, phase, load, main line, etc.  



INCIDENT DATA 

Source Downloadable from SCE SharePoint. 
Contact:  

 for FIPA and RO data. 
 and  for 

OMS data. 
 for WD data. 

 for P2 data. 
 

Data file(s) • Fire investigation and pre-analysis (FIPA) data (FIPA_Database_Export_8_15_2023.csv). 

• Repair order (RO) data: 

o RO data (RO_Data_Export_8_15_2023.csv). 

o RO equipment data (RO_Equipment_Export_8_15_2023.csv). 

o RO event data (SharePoint_Event_Data_for_SQL.csv). 

• Wire down (WD) data (WD 2020 onward - 8.29.23.csv). 

• Outage (OMS) data (OutageData_2020_2023.csv). 

• Inspection and notification (P2) data (P2 Data 09132023.csv). 

Last Updated Data Pull: August, 2023 

Frequency of Update Manual pull 

Historic Availability 2020 onward 

 

We extract historical asset failures from these datasets and use them as target data to train machine learning (ML) 

models. Depending on the type of assets (e.g., pole or conductor) and the source of data, we apply different filters 

to extract SCE involved incident data from the beginning of 2020 to the end of 2022 in HFRA and for over-head 

distribution circuits only. Table 1 below shows how we extract target data for each asset type. Note that no asset 

failure has been extracted from the P2 dataset, as recommended by subject matter experts (SME). 



Table 1. Extracting historical asset failures. 

 FIPA RO WD OMS P2 

Pole (i) Root cause is 
equipment failure or 
construction issue.  
(ii) Equipment category 
is pole, pothead, 
insulator, or guy wire. 

(i) Event driver is 
equipment 
failure. 

(ii) Equipment 
type is pole, 
cross-arm, 
insulator. 

(i) WMP category is 

equipment failure. 

(ii) WMP sub-category is 
pole, cross-arm, insulator 
and brushing, anchor/guy. 

(iii) Trigger is weather, pole 
damaged, crossarm failure, 
corrosion/deterioration, 
insulator. 

(i) RMI19 cause 

category is pole. 
NA 

Conductor (i) Root cause is contact 
(CFO), conductor slap, 
equipment failure. 

(ii) Root cause spec is 
weather/contamination, 
metallic balloon, tree, 
foreign object, high 
winds, foreign contact, 
large sag, inconclusive. 

(iii) Equipment category 
is primary or secondary 
conductor. 

(i) Equipment 
type is conductor. 

(i) WMP sub-category is 
conductor, vegetation 
contact, balloon contact, 
wire-to-wire contact, other 
contact from object. 

(ii) Trigger is weather, 
vegetation, mylar balloon, 
damaged wire, other 
contact from object, 
connector/splice failure. 

(i) RMI19 cause 
category is 
conductor/wire. 

NA 

Transformer (i) Root cause is 

equipment failure. 

(ii) Root cause 
equipment category is 
transformer. 

(i) Event driver is 
equipment 
failure. 

(ii) Equipment 
type is 
transformer. 

NA (i) RMI19 cause 
category is 
transformer. 

NA 

Switch (i) Root cause is 
equipment failure. 

(ii) Root cause 
equipment category is 
switch. 

(i) Event driver is 
equipment 
failure. 

(ii) Equipment 
type is switch. 

NA (i) RMI19 cause 
category is 
switch/disconnect/AR. 

NA 

Capacitor (i) Root cause is 
equipment failure. 

(ii) Root cause 
equipment category is 
capacitor. 

(i) Event driver is 
equipment 
failure. 

(ii) Equipment 
type is capacitor. 

NA (i) RMI19 cause 
category is NOT 
transformer, 
conductor/wire, pole, 
insulator. 

NA 

 

 

 



VEGETATION DATA 

Source Downloadable from SCE SharePoint. 
Contact:  

 
 

 

Data file(s) • Line clearing data: 

o Arbora line clearing data (20230926_Logic2020_LineClearing_Arbora_Insp_Mitig.csv). 

o S123 line clearing inspection (20230926_Logic2020_LineClearing_S123_Insp.csv). 

o S123 line clearing mitigation (20230926_Logic2020_LineClearing_S123_Mitig.csv). 

• Heavy tree data (20230926_Logic2020_HeavyTree.xlsx). 

• Structure brushing data: 

o 20230926_Logic2020_StructureBrushing_2020.csv 

o 20230926_Logic2020_StructureBrushing_2021.csv 

o 20230926_Logic2020_StructureBrushing_2022.csv 

o 20230926_Logic2020_StructureBrushing_2023.csv 

Last Updated Data Pull:  September, 2023 

Frequency of Update Manual pull 

Historic Availability 2020 onward 

 

Line clearing datasets and heavy tree datasets are merged into a single dataset. All four structure brushing datasets 

are also merged into a single dataset. Structure brushing data is used as one feature of pole, and line clearing data 

is used as a feature of both pole and conductor.  

The trees and their work status as well as their positions in the line clearing dataset are associated with poles and 

conductors based on their distances to the nearest conductor and pole (Identifying nearest pole and conductor is 

done as a spatial join using geopandas python library). A tree is considered a risk to a pole or a conductor if it is less 

than 10 meters away. It would be better if we could use the actual height of a tree to determine if it could hit a 

nearby pole or conductor. Unfortunately, missing tree height data is common in line clearing datasets, therefore we 

have to defer to the aforementioned assumption. 

For each pole and conductor, we keep track of its number of danger trees. The higher the number, the higher the 

risk of failure. We reduce these numbers whenever a tree is removed or if some work has been done (e.g., trimming).  



SCADA DATA 

Source Downloadable from SCE SharePoint. 
Contact:  

 
 
 

 

Data file(s) • SCADA point ID to SAP equipment ID (Output_PointID_EquipmentID.csv). 

• List of points (Results 15,527 Points for 1066 Circuits PSPS v2.csv). 

• SCADA point values: 33 zip files “output*.zip” in SCADA folder on SCE SharePoint. 

Last Updated Data Pull: September, 2023 

Frequency of Update Ad-hoc 

Historic Availability Unknown 

 

These data sources contain operational data (analog voltage, current, etc.) of capacitors and switches on over-head 
distribution poles in HFRAs from the eDNA and PI systems. There is no operational data available for transformers. 
For capacitors, available information includes voltage and delta-voltage (daily mean value and standard deviation). 
For switches, available information includes the current of three phase A, B, C and of the neutral and the ground. 
Also included are voltage of three phase A, B, C. Data is recorded every 12 hours (or every 4 hours for some 
equipment) or when changes happened. Data sampling rate is every 4 seconds. These reflect the historical working 
conditions of capacitors and switches and are used as features to predict capacitor and switch failures. 



STRUCTURAL DATA (SPIDA) 

Source Downloadable from SCE SharePoint. 
Contact:  

 
 

 
 

Data file(s) • Pole data: 

o WORK_QUERY_FOR__BIC_AZTDINP1300.csv. 

o WORK_QUERY_FOR__BIC_AZTDPOO2500.csv. 

• Pole inspection data (BIC_AZTD_SPSF00.csv). 

• Pole insulator data (WORK_QUERY_FOR__BIC_AZTDPOO1200.csv). 

• Pole wire data (WORK_QUERY_FOR__BIC_AZTDPOO1400.csv). 

• Pole cross-arm data (WORK_QUERY_FOR__BIC_AZTDPOO1500.csv). 

• Pole wind loading data (BIC_AZTDINP0600.csv). 

• Pole wind rating data (AZTDPOO2800.csv). 

• Pole equipment testing data (AZTDINP1000.csv). 

• Pole equipment modification data (AZTDINP1200_V2.csv). 

Last Updated Manual Pull:  September, 2023 

Frequency of Update Ad-hoc 

Historic Availability Unknown 

Notes We also collect pole and conductor/wire information from this data source. 

 
These data sources contain several datasets that provide structural information as well as test results for poles. The 
datasets included are described below: 

• Pole master data: contains information about poles such as FLOC, latitude, longitude, pole type, class, sub-
type, height, and base type. 

• Pole inspection data: contains information about inspection date, flow and load case, actual result and 
allowable result, etc. We extract data of two flows: “SCE-PLP” and “PLP Main”; and we extract data of the 
following components: “Pole SF” (safety factor), “Pole strength”, “Utility guy SF”, and “Pole buckling”. 

• Pole insulator data: contains information about poles’ insulators, such as number of insulators, height, type, 
U-size, etc. We divide insulators into different groups: “PIN”, “Deadend”, and “Clamp”. For each pole, we 
count the total number of insulators, as well as the numbers of insulators in each group. We use these 
numbers as predictors to predict pole failures. 

• Pole wire data: contains information about conductors/wires. We extract conductor/wire data from this 
SPIDA table. 

• Pole cross-arm data: contains information about poles’ cross-arms, such as configuration, height, type, U-
size, etc. We divide cross-arms into four groups, based on their length. These four groups are: less than 8ft 
cross-arms, 8 ft cross-arms, 10 ft cross-arms, and longer than 10 ft cross-arms. We count the number of 
cross-arms in each group for each pole and use these numbers as predictors to predict pole failures.  

• Pole wind loading data: contains information about pole wind loading tests, which includes analysis date, 
load case component, load case test result (passed or not passed), etc. We extract only data for the 
following load case components: “Pole”, “Pole strength”, “Guy 1”, and “Pole buckling”.  

• Pole wind rating data: contains current wind ratings and in-service wind ratings. Only data of distribution 
poles and hybrid poles are extracted. 

• Pole equipment testing data: contains equipment testing results (passed or not passed) of equipment on 
poles. We extract results for transformers, capacitors, and reclosers. 

• Pole equipment modification data: contains information about conductor modifications at various 
poles/FLOCs. As conductors/wires at the same FLOC were replaced, we use this information to get correct 
characteristics of conductors/wires given a specific date and location. 



CIRCUIT AND SEGMENT DATA 

Source Downloadable from SCE SharePoint. 
Contact:  

 for NET9 data. 
 for NET9 to iPEMS data. 

 

Data file(s) • Segment data (NET9_CKT.CSV). 

• Structure to segment to circuit mapping (NET9_SEGMENT_TO_FLOC.CSV) 

• NET9 segment to iPEMS segment (section) mapping (net9_with_segment_1-28-24.csv). 

Last Updated Manual Pull:  September, 2023 

Frequency of Update Ad-hoc 

Historic Availability Unknown 

 

These data sources contain circuit, segment and iPEMS segment (e.g., section) configurations. The configuration 
data maps each pole/FLOC (and all its equipment) to a segment, an iPEMS section, and a circuit. We use this data to 
aggregate probabilities of failure at the asset level to higher level, such as iPEMS segment level or circuit level. 
Probabilities of failure at the iPEMS segment level or circuit level are required in order to create PSPS thresholds. 

LOCATION DATA 

Source Downloadable from SCE SharePoint. 
Contact:  

  
 

Data file(s) • Location corrosive and flooding data (DM_ALL_STRUCS_corrosionzone.csv). 

Last Updated Unknown 

Frequency of Update Unknown 

Historic Availability Unknown 

 

This data source contains corrosive and flooding categories for each functional location. We consider this as a static 
dataset, e.g., we assume corrosive and flooding categories of a FLOC do not change over time. We use this data to 
learn how flooding and corrosion impact poles.  



INSPECTION AND MITIGATION DATA 

Source Downloadable from SCE SharePoint. 
Contact:  

 
 

 

Data file(s) • AGP inspection data (HFRA_EQ_AGP.csv). 

• Other inspection data (HFRA_EQ_CIRC_IPI_ODI_EOI.csv). 

• Mitigation data (STG_WF_ME_INCREMENTAL.csv). 

• Covered conductor status data (COVERED_CONDUCTOR_SCOPE_20230705.csv) 

Last Updated Manual Pull: September, 2023 

Frequency of Update Unknown 

Historic Availability Unknown 

 

These data sources contain inspection and mitigation data for distribution circuits in HFRAs. We use this data 
primarily to extract the covered conductor status for conductors, and the inspected status for poles. The assumption 
is if a conductor is a covered conductor, it is less likely to fail. Similarly, if a pole has been inspected, its probability 
of failure is lower. 



Data Processing 

In this section, we describe how we derive training data for different equipment types, such as pole and conductor, 
from the data sources above.  

DATA PRE-PROCESSING 

In general, for each equipment type, we first join the asset data with static data sources, such as location corrosive 
and flooding data or SPIDA data, based on asset locations (FLOC). This step adds more features to the asset data. 
Next, we join asset data with dynamic data sources, such as weather data, vegetation data, and SCADA data, based 
on location and date. This step associates varied weather conditions and vegetation data with assets. The last step 
is joining asset data with incident data of the same type, based on equipment ID and date. This final step assigns 
learning target label (e.g., whether an asset fails on a specific day) to each record in the asset data. Records 
associated with incidents are called positive examples, otherwise they are called negative examples. 

After getting the asset data with static and dynamic features and learning target labels, we split it into three subsets 
chronologically. The first set, which contains data from the beginning of 2020 to the end of June 2022, is called the 
training set. The second set, which contains data from the beginning of July 2022 to the end of October 2022, is 
called the cross-validation set. The third set, which contains data from the beginning of November 2022 to the end 
of December 2022, is called the test set. (There are two exceptions: capacitor and transformer datasets are split on 
October 2022 instead of November 2022.) We choose to split the datasets on these dates to have an approximately 
equal number of failures on each set for all equipment types. Having too few failures on training datasets makes it 
difficult for the models to learn patterns from data, and having too few failures either on the cross-validation 
datasets or the test datasets make the models’ evaluation results unreliable. Note that we decide not to use any 
data in 2023 since the machine learning-adjusted weather data is only available until the end of 2022. 

We use the training dataset to train ML models to predict equipment failures; then use the cross-validation dataset 
to evaluate all trained models and select the best one, based on several performance metrics. We also use the cross-
validation dataset to calibrate the probabilities output by trained models. We use the test dataset to verify our best 
model’s performance at the segment level, to create segments’ probability of failure curves, and to create segments’ 
PSPS thresholds.  

For all asset types, we observe that the number of failed equipment days is very small compared to the number of 
normal equipment days. This makes it extremely difficult for ML models to distinguish between the failures and non-
failures. To make the training process efficient and effective, we do not include all equipment in the training and 
cross-validation datasets. Instead, we include all equipment with failures, and a small sample of equipment with no 
failures. However, for the test dataset, we include all equipment so that the final segment level evaluation, the 
segments probability of failure curves as well as segments PSPS thresholds are non-biased. 









POLE TRAINING DATA 

Pole asset data contains pole class, pole base, pole sub-type, pole height, various load and wind test results, etc. This 
information is extracted from multiple SPIDA tables. The following are steps to derive pole training data and are also 
illustrated in Figure 6:  

• Join with location data to get corrosive categories and flooding categories.  

• Join with SPIDA data to extract number of insulators, number of cross-arms, etc. 
• Join with weather data to get weather conditions. 

• Join with vegetation data to get number of hazard trees. 

• Join with SPIDA pole load test data to extract test results for two flows (“SCE-PLP” and “PLP MAIN”) and 
four components (“POLE SF”, “POLE STRENGTH”, “UTILITY GUY SF”, and “POLE BUCKLING”). 

• Join with SPIDA wind load test data to extract test results for four components (“POLE”, “POLE-STRENGTH”, 

“GUY 1”, and “POLE-BUCKLING”). 

• Join with SPIDA equipment test data to extract test results for transformer, capacitor, recloser. 
• Join with pole incident data to get learning targets. 

TRANSFORMER TRAINING DATA 

Transformer asset data contains manufacturer, sub-type, model number, primary and secondary voltages, etc. There 
is no SCADA data available for transformers. The following are steps to derive transformer training data and are also 
illustrated in Figure 7:  

• Join with location data to get corrosive categories and flooding categories.  
• Join with weather data to get weather conditions. 

• Join with transformer incident data to get learning targets. 

SWITCH TRAINING DATA 

Switch asset data contains manufacturer, type, switch type, phase, load, DNI type, etc. SCADA data are available for 
switches, which includes voltage and current data of all phases. The following are steps to derive switch training data 
and are also illustrated in Figure 8:  

• Join with location data to get corrosive categories and flooding categories.  

• Join with weather data to get weather conditions. 

• Join with SCADA data to get voltage and current information. 

• Join with switch incident data to get learning targets. 
 













MODEL TRAINING AND RESULTS 

ASSUMPTIONS AND LIMITATIONS 

We have made the following assumptions when creating training datasets, resampling training data, and deriving 

PSPS thresholds from segment POF curves: 

• Conductor incidents: there is no conductor/wire ID reported for each incident, but the location and date of 

the incident. Therefore, for each incident, we associate it with all active conductors on that day at the 
reported pole/FLOC. This may create multiple conductor failures for each conductor incident reported. 

• Weather conditions associated with incidents: weather conditions are provided for every hour. However, 
incidents are reported by location and date. We therefore associate the average and maximum weather 
conditions of a day with all incidents that occurred on that day. 

• Weather conditions associated with poles: we assume weather conditions of a pole are the weather 
conditions of its nearest weather forecast grid cell (2 km by 2 km area). This might not be a good 
approximation for poles that are at or near the center of four grid cells. A better approximation could be a 
weighted sum weather conditions of four nearest grid cells, based on distance to cell centroids. 

• Weather conditions associated with conductors: we assume weather conditions of a conductor are the 
same as weather conditions of its pole/FLOC. This might not be a good approximation for long conductors 
that span multiple grid cells. A better approximation could be a weighted sum weather conditions of all grid 
cells that the conductor goes through, based on distance to cell centroids. 

• Trees which are danger to poles and conductors: most trees in danger tree data do not have their height 
recorded. When considering if a tree is a risk to a pole or a conductor nearby, we assume the tree height is 
10 meters. That means, if the distance from the tree to a pole or a conductor is less than 10 meters, it is a 
danger tree as it can strike the pole or conductor.  

• Domain knowledge failure over-sampling: one critical issue we have when training ML models is that the 
number of failures is diminutive. To overcome this issue, we use the following domain knowledge to create 
more “synthetic” failures: 

• Pole classes in order of increasing horizontal load: 10, 9, 7, 6, 5, 4, 3, 2, 1, H1, H2, H3, H4, H5, H6. 

• Pole sub-types in order of increasing strength: “WC-WESTERN CEDAR”, “DOUGLAS FIR - THROUGH-
BORED”, “DF-DOUGLAS FIR”, “CF-COMPOSITE FIBERGLASS”. 

• Pole bases in order of increasing strength: “DIRT”, “CEMENT” 

• Conductor size in order of increasing strength: “4 ACSR”, “2 ACSR”, “1/0 ACSR”, “336.4 ACSR 

MERLIN” 

• Probability tolerance at different FPI levels: when deriving PSPS wind speed and wind gust thresholds from 
POF curves, we assume the following maximum probability of failure tolerance. Adjusting these tolerance 
thresholds will change PSPS wind speed/wind gust thresholds accordingly, e.g., increasing tolerance 
thresholds will increase PSPS thresholds. 

• For high FPI (FPI >= 15): maximum POF tolerance is 20%. 

• For medium FPI (FPI = 13 or 14): maximum POF tolerance is 50%. 

• For low FPI (FPI <= 12): maximum POF tolerance is 70%. 

EXPLORATORY ANALYSIS 

The main goal of this study is to associate weather conditions, especially wind speed and wind gust, with equipment 

failures. Our hypothesis is that there is a high correlation between wind speed, wind gust, and other weather 

conditions, such as humidity and temperature, to equipment working status. We show below the results of several 

exploratory data analysis on pole and conductor data. Similar analyses on transformer, switch, and capacitor data 

reveal similar patterns and are omitted. 

 





The first step above removes features with a high ratio of missing data. Table 3 lists these features for each asset 

type. Among all asset types, only conductor has no features removed. All SCADA features are removed from 

capacitor and switch datasets; and many SPIDA features are removed from pole datasets. One known issue with 

SCADA dataset is the lack of mapping between SCADA measurement point IDs to equipment IDs. Without this 

mapping, we cannot link SCADA readings to capacitors or switches. The issue with SPIDA dataset could be explained 

that there are only a small number of poles that have been structurally tested. 

 

Table 3. Features removed due to high ratios of missing data. 

Capacitor Pole 

Feature Pct data 
missing 

Feature Pct data 
missing 

Feature Pct data 
missing 

Manufacturer 92 elevation 90 POLE SF insp passes 99 
SystemVoltage 34 polar_current_wind_rating 95 POLE STRENGTH_insp_passes 99 
VoltagePrimary 39 polar_inservice_wind_rating 95 UTILITY GUY SF_insp_passes 99 
SwitchType 44 num_insulators 44 POLE BUCKLING_insp_passes 100 

MountCode 73 num_PIN_insulators 64 POLE_wind_load_passes 99 
FuseHolderType 37 num CLAMP insulators 66 POLE-STRENGTH wind load passes 99 
FuseSize 49 num_DEADEND_insulators 77 GUY 1_wind_load_passes 99 
NumUnits 42 num_lt_8ft_Xarms 87 POLE-BUCKLING_wind_load_passes 99 
LightningArrestor 32 num 8ft Xarms 88 TRANSFORMER test passes 100 
PotentialXfrmrCld 41 num_10ft_Xarms 57 CAPACITOR_test_passes 100 
Delta_Volt_Mean 77 num_gt_10ft_Xarms 97 RECLOSER_test_passes 100 
Delta_Volt_StDev 82 

    

Transformer 

Feature Pct data missing 

ModelNumber 49 
FLOC SystemVoltage 96 

ClimateCode 75 
Corrosivit 33 

Switch 

Feature Pct data 
missing 

Feature Pct data 
missing 

Feature Pct data 
missing 

DNIType 84 IG_Mean 96 VC_StDev 98 
Manufacturer 88 IG_StDev 96 Instant.I-1_Mean 100 
Load 35 IN_Mean 100 Instant.I-1_StDev 100 

Corrosivit 38 IN StDev 100 Instant.I-2 Mean 100 
I1_Mean 99 V2_Mean 100 Instant.I-2_StDev 100 
I1_StDev 99 V2_StDev 100 Instant.I-3_Mean 100 
IA_Mean 97 VA_Mean 98 Instant.I-3_StDev 100 
IA StDev 97 VA StDev 98 Instant.I-G Mean 100 
IB_Mean 96 VB_Mean 98 Instant.I-G_StDev 100 
IB_StDev 96 VB_StDev 98 Volts_Mean 98 
IC_Mean 96 VC_Mean 98 Volts_StDev 98 

IC_StDev 96 
    

 

 







a result, RidgeClassifier can assign a negative effect to a categorical feature by assigning a positive weight to its 

sibling, therefore not hurting predictive performance.  

Note that we do not create “NEG_” features for any weather features, thus RidgeClassifier is forced to learn only 

positive effect on them. 

Resampling: In all our datasets, the ratio of positive vs negative examples is about 0.01%. This makes it extremely 

hard for the training algorithm to learn any pattern in the data. We address this problem by over-sampling (i.e., 

synthesizing) more positive examples, and randomly under-sampling (i.e., removing) negative examples. We use two 

approaches to sample positive examples: 

• Sampling positive examples using domain knowledge: we use our knowledge about pole and conductor 

strength as well as general knowledge about how wind affects equipment to generate synthetic failures.  

• Example 1: assuming there is a positive example of a class 2 pole failure. Knowing that class 2 poles 
are stronger than class 3, 4, and 5 poles, we can generate three more positive examples by making 
three exact copies of the original failure and replacing the pole class with 3, 4 and 5. The same 
approach can be applied to pole sub-type (knowing that “DF-DOUGLAS FIR” is stronger than “WC-
WESTERN CEDAR”) and conductor size (knowing that “336.4 ACSR MERLIN” size is stronger than 
“’1/0 ACSR”, “2 ACSR”, and “4 ACSR” size). 

• Example 2: assuming there is a positive example of an equipment failure at wind speed of 10 mph. 
Applying general knowledge, we can conclude that the same equipment would also fail at any wind 
speed greater than 10 mph. Therefore, we can generate more positive examples by making exact 
copies of the original record and replacing wind speed or wind gust with higher values. 

• Sampling positive examples using SMOTE (Synthetic Minority Over-sampling Technique): SMOTE is a set of 
techniques commonly used by machine learning community to over-sampling the minority class. It 
generates positive examples by sampling the linear space between similar positive examples. SMOTE 
generates more data by interpolating, while our domain knowledge-based over-sampling generates more 
data by extrapolating. We use SMOTE in combination with our domain knowledge-based over-sampling, as 
the last step to bring the positive/negative ratio to 10% for all training datasets.  

Note that we only resample the training datasets. We do not resample the cross-validation datasets, nor the testing 

datasets so that the model evaluation is not impacted by the synthetic examples. 

It turns out that, out of ten of our best POF models, seven are trained on resampled datasets. However, we have not 

done any study to understand if the improvements are significant, and if the improvements are results of using 

domain knowledge resampling or SMOTE resampling.  

Search space: as common practice, we use grid search approach to tune model’s hyper parameters. Our search 

space is defined by the feature sets (combinations of different groups of features, such as weather features, asset 

features, SCADA features, etc.), the regularization constant, and the class weights. For each asset type, the search 

space normally contains hundreds of models. We train all of them using the training datasets, then evaluate them 

using the cross-validation datasets. Finally, we select the best model among them based on several criteria. 



Evaluation metrics: each trained model is evaluated based on a set of metrics for binary classification problem. In 

addition, we also evaluate each model on two metrics developed by Logic2020 just for this PSPS threshold project, 

which we call Logic-S and Logic-WS metrics. All metrics used to evaluate models are listed below: 

• Matthews Correlation Coefficient (MCC): The Matthews correlation coefficient is used in machine learning 
as a measure of the quality of binary and multiclass classifications. It considers true and false positives and 
negatives and is generally regarded as a balanced measure which can be used even if the classes are of very 
different sizes. 

• F-beta score (+F-beta) with beta = 10: The F-beta score is the weighted harmonic mean of precision and 
recall, reaching its optimal value at 1 and its worst value at 0. The beta parameter represents the ratio of 
recall importance to precision importance. 

• Class likelihood ratios (LR+ and LR–): The positive likelihood ratio is LR+, and the negative likelihood ratio 

is LR-. Both class likelihood ratios can be used to obtain post-test probabilities given a pre-test probability. 

• Brier loss score (Brier loss): The smaller the Brier score loss, the better, hence the naming with “loss”. The 
Brier score measures the mean squared difference between the predicted probability and the actual 
outcome. 

• Balanced accuracy score (Bal Acc.): The balanced accuracy in binary and multiclass classification problems 
to deal with imbalanced datasets. It is defined as the average recall obtained in each class. 

• Area under the receiver operating characteristic curve (ROC AUC): summarizes the ROC curve by 
computing the area under it. By doing so, the curve information is summarized in one number. 

• Average precision score (Avg Prec.): summarizes a precision-recall curve as the weighted mean of 

precisions achieved at each threshold, with the increase in recall from the previous threshold used as the 
weight. 

• Logic20/20 model variability (Logic-S): measure the variability of a model, by computing the percentage of 
equipment with probabilities vary more than 5 percent point. 

• Logic20/20 model sensitivity to wind speed/gust (Logic-WS): measure the sensitivity of a model to wind 
speed or wind gust, by computing the ratio between wind speed/wind gust weights and total weights.  

These metrics measure different aspects of a model, and they provide good insights into the model’s performance. 

However, no single metric can be used to select the best model. Therefore, we carefully select a subset of metrics 

that best represent the desired characteristics of the models as criteria used in model selection step below. 

Model calibration: The RidgeClassifier predicted probabilities of failures are not the real POF. When training a model, 

we ask the model to rebalance the positive and negative example ratio through the class weight parameter. This 

distorts the real positive/negative ratio. Consequently, the model tends to predict higher probabilities. We address 

this issue by using the cross-validation dataset to calibrate the model, making predicted probabilities closer to real 

failure probabilities. We use sklearn’s CalibratedClassifierCV for this purpose. Without calibrating, predicted 

probabilities at segment level are high, making generated PSPS thresholds unreasonably low. 

Model selection: The aforementioned metrics measure different aspects of a model, and they provide good insights 

into the model’s performance. However, a single metric is not enough to represent the model’s performance. In 

addition, some metrics are highly correlated to others. Using all of them to rank trained models would signify the 

impact of a small group of metrics. We carefully analyze the correlation among these metrics based on cross-

validation datasets, and select a subset of them for model selection.  

The metrics we use to rank trained models are MCC, LR+, ROC AUC, and Logic-S. MCC is known as a good metric for 

binary classification problem, even in cases of imbalanced data, such as in our case. LR+ measures the predictive 

power of a model to the positive class, which is one of our desired criteria, as we want our model to be able to 

identify the rare failures among the ocean of non-failures. ROC AUC measures the overall quality of a model in terms 

of precision and recall. Logic-S is our own metric developed just for this PSPS wind speed threshold project. As 

described earlier, it measures the variability of a model. In our case, it measures the sensitivity of a model to all 



dynamic features, which are weather conditions. We do not use Logic-WS, our second metric developed for this 

project, as it only measures a model sensitivity to wind speed or wind gust. Our study reveals that Logic-WS is too 

biased to models that have only wind speed or wind gust features. 

We rank trained models by first normalizing all metric values to the range [0, 1], with 1 representing the highest 

metric value. Note that for the metrics we use to rank models, the higher the value, the better. We then calculate 

the sum of metric values and the sum of square of metric values. Models are ranked by the sum of metric values 

minus the sum of square of metric values and the top ranked model is selected. By doing so, we prefer models with 

high total metric values, and also prefer models with balanced metric values.  

MODEL PERFORMANCE 

As mentioned before, we use training datasets to train models, and cross-validation datasets to evaluate, calibrate, 

and rank models. The top ranked model for each asset type is used to evaluate segment level model, create POF 

curves and derive PSPS thresholds. Below, we report performance metrics of all top ranked models for each asset 

type, and also report performance metrics of the segment level model. All performance results are based on cross-

validation datasets. 

Conductor model performance: 

Figure 15a shows the wind speed conductor model performance, and Figure 15b shows the conductor wind gust 

model performance. For each model, we show all its weights in decreasing order of importance, the classification 

report, which includes precision, recall, F1-score, and support for each class. We also show all metric values 

(unnormalized), confusion matrix, and the ROC curve together with the AUC.  

Overall, both wind speed and wind gust conductor models are better than a random-guessing model. This is clear 

based on the ROC curve, as it is above the diagonal line, which represents the random-guessing model. However, 

the predictive powers of both models are not great, as their AUC values are less than 70%.  

Both models are simple models, with very small numbers of features. The features selected by these models also fit 

well with our domain knowledge, except that these models do not consider conductor size. However, this could be 

the result of not having enough failures that cover different conductor sizes. 

Note that neither model catches more than 50% of the failures. Both models operate at low false positive rate and 

low true positive rate. This behavior can be changed by changing the failure prediction probability threshold to less 

than 50% to get higher true positive rate, with the consequence of higher false positive rate. 

 





























Conclusions 

OUR METHODOLOGY IS EXPLAINABLE, DEFENSIBLE, AND THEORETICALLY DEPLOYABLE 

This project is the result of a great collaboration among engineers, subject matter experts, and data scientists from 

SCE and Logic20/20. Together, we have designed and implemented an explainable, defensible and operational 

method to address a difficult problem of deriving PSPS wind speed and wind gust thresholds at the segment level. 

All models are simple, easy to understand, easy to maintain and upgrade. They are trained and evaluated based on 

methodologies and standards commonly used in data science and machine learning. The models can be easily 

deployed and operated in any cloud environments. Based on our experiments, the models can make predictions in 

real time.  

WE FOLLOW A DATA DRIVEN AND DOMAIN KNOWLEDGE DRIVEN APPROACH 

We’ve built this project based on a data driven and domain knowledge driven approach, leveraging on huge amounts 

of data that SCE has been recording, and on valuable knowledge from SCE subject matter experts. Both driving forces 

are beneficial, as large volume of data is beneficial to the model training process, while domain knowledge helps 

with the modeling process as well as with addressing several data issues.  

OUR ML TRAINED MODELS ARE PROMISING BUT ARE NOT READY FOR PRODUCTION 

The models’ performances, as reported in previous sections, do not meet our expectations. For a high-risk and critical 

application such as the PSPS application in our case, we expect our models to have a high true-positive rate and at 

the same time a low false-positive rate. In other words, we expect our models to be able to predict equipment 

failures at high accuracy (i.e., with a small number of misses and a small number of false alarms). Failing to predict 

failures would lead to catastrophic wildfire, and wrong predictions of failures lead to unnecessary de-energization. 

Both outcomes are expensive and unwanted.  

The segment level model, which is used to generate segment PSPS thresholds, has a high true negative rate of 95%  

(i.e., very low false alarm rate), but a low true positive rate of 10% for wind speed and 17% for wind gust (i.e., it 

misses a majority of historical failures). The model can be easily tuned to catch a higher number of failures, at the 

cost of a higher number of false alarms. As pointed out before, we can adjust the model to catch 80% of historical 

failures, at the cost of 40% false alarms. However, that accuracy still does not meet our expectation.  

A high rate of false alarms is a result of overestimating probabilities. Over-estimated POF curves reach high values 

quickly, at low wind speed and wind gust level. Consequently, derived PSPS thresholds would be lower than 

expected. In contrast, a high rate of missed failures is a result of underestimating probabilities. Under-estimated POF 

curves increase slowly as wind speed and wind gust increase. In this case, derived PSPS thresholds are higher than 

expected (in some cases are unreasonably high). Both these types of POF curves exist, as shown in Figure 22 and in 

the Appendix.  

Based on the models’ performances, we conclude that the models we built are promising, but need further 

improvements and investigations in order to be in production.   

THERE ARE OPPORTUNITIES FOR FURTHER IMPROVEMENTS 

There are certainly opportunities for improvement that should continue to be investigated by SCE. Among them, at 

a high level, are improving data quality and data quantity; considering other machine learning and data handling 



techniques; and analyzing the generated PSPS thresholds to understand when they make sense and when they do 

not. We provide details in the next section. 



Recommendations 

ENHANCEMENTS BACKLOG 

Explore other external and internal data sources: using publicly available data sources – for example the land use 
data source – can improve model performance by adding useful features to the training datasets. Other internal 
valuable data sources could also be used. For example, useful vegetation features and pole condition features could 
be extracted from the LiDAR data source. 

Expand data scope temporally and spatially: one critical issue we have in this project is not having enough 
equipment failure data, especially for capacitors and switches. Expanding data scope temporally and spatially may 
relieve this issue. We suggest including historical data before 2020, and data of equipment not in HFRA areas. In 
addition, we suggest processing raw wind speed and wind gust of 2023 so we can make use of another year of data. 

Improve data quality: data quality is another challenge we have, which includes missing data and invalid data. For 
example, many features have been removed during the feature engineering step due to high missing data rate, as 
reported in Table 3. In another example, about 10% of FIPA data cannot be used due to missing root cause 
information and root cause equipment category information. Improving data quality would definitely improve model 
performance as it adds more useful information to the datasets.  Investing in data infrastructure such as data lake 
and data governance not only benefits data driven projects like this PSPS wind speed threshold project, but also 
benefits companywide operations. 

Evaluate the effectiveness of resampling technique: based on the fact that seven out of ten selected models are 
trained on resampled datasets, we conclude that resampling improves models’ performance. What we don’t know 
yet are (i) whether it significantly improves performance; (ii) whether domain knowledge based over-sampling is 
more effective than SMOTE over-sampling or vice versa; and (iii) why resampling works for some asset and not for 
others. Analyses that answer these questions would help us design better resampling strategies that would lead to 
higher accurate models. 

Experiment with other ML technologies: with higher quality data and more positive examples as the results of 
previous recommended enhancements, we could experiment with more complex and powerful ML training 
algorithms to improve models’ accuracy.  

Analyze and back-casting generated PSPS thresholds: even though the PSPS thresholds are generated based on 
moderately accurate models, it’s worth knowing the difference between generated PSPS thresholds and current 
PSPS thresholds. Knowing that the new PSPS thresholds are similar to the current PSPS thresholds on a subset of 
segments will support and strengthen our knowledge; knowing that there is difference on other subset of segments 
might suggest further analyses that could reveal interesting findings. 



 Appendix 

TERMS 

EDA: Exploratory Data Analysis 

FIPA: Fire Investigation and Pre-Analysis 

FPI: Fire Potential Index 

HFRA: High Fire Risk Area 

iPEMS: Integrated PSPS Event Management System 

ML: Machine Learning 

OMS: Outage Management System 

POC: Period of Concern 

POF: Probability of Failure 

PSPS: Public Safety Power Shutoff 

RIT: Risk Informed Thresholds 

RO: Repair Orders 

ROC AUC: Area under the Receiver Operating Characteristic Curve 

SCADA: Supervisory Control and Data Acquisition 

SCE: Southern California Edison Co. 

SME: Subject Matter Expert 

SMOTE: Synthetic Minority Oversampling Technique 

SPIDA: utility pole software solutions. 

WD: Wire Down 

 
























































