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Analysis of resonant earthed networks 
This document has been written to support a joint study into theoretical modelling of resonant 
earthing commissioned by the four electricity distribution businesses in Victoria Australia in 2014. 
The goal of the study was to better understand the transient behaviour of resonant earthed 
networks to gain insights into the fire risk associated with powerline earth faults in such networks. 
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Purpose of  the analysis  

Resonant earthed systems are electricity distribution networks that are earthed by the connection of 
an inductor (an Arc Suppression Coil or ASC) between the neutral connection of the zone substation 
transformers and the zone substation earth grid. 

There are many published formulae that predict the steady state value of residual conductor voltage 
and current for an earth fault in a resonant earthed network, but few that accurately predict the 
transition from pre-fault to post-fault steady state conditions or the transition that occurs when the 
fault current ceases to flow. Calculation methods for these transitions are potentially important to 
assessment of fire risk in earth faults as they predict how fast the voltage on the faulted phase will 
collapse (i.e. how soon arcs might self-extinguish) and how fast it will rise again if compensation is 
switched off.  

The following analysis relies on three simplifications: 

1. It uses a simplified 50Hz lumped element equivalent circuit – it doesn’t address higher 
frequency effects in the first 20 milliseconds that involve travelling waves that require 
distributed element models of powerlines and substation components. The transients of 
interest (those that follow occurrence and removal of a fault) take place over hundreds of 
milliseconds, whereas the initial high frequency transient is usually gone in 20 milliseconds. 

2. The earth fault is assumed to be a constant linear resistance connecting one phase to earth, 
so the system equation is linear and the principle of superposition can be used to simplify 
the analysis considerably. A more realistic non-linear fault resistance would create major 
complexity in the mathematics and may be best handled by time domain simulation. 

3. Unless otherwise stated, the network is perfectly balanced: the capacitance and leakage 
resistance of each phase to ground is equal to that on the other two phases and the three 
phase voltages are perfectly balanced at the source substation. This allows the whole array 
of balanced three-phase voltages and currents to be subtracted from the full representation 
of the system, to leave a single phase equivalent circuit that determines the neutral 
displacement voltage. There is always some imbalance in real networks and additional 
analysis can address this. 

The analysis results have been confirmed using time domain simulation of network models that 
match the parameters used in the analysis. More complex distributed-element network models have 
confirmed that the theory derived from lumped-element analysis still holds in that such models 
produce results sets that are internally self-consistent with the theory. 

The results have been compared with field test results only in general terms to date. 

The author would like to acknowledge the published outline Oscillations and Waves by Professor 
Richard Fitzpatrick of the University of Texas at Austin. This short treatise was useful confirmation of 
a suitable high level structure for theoretical analysis of forced harmonic oscillators, of which this 
document is one example.  
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Outline of  the analysis 

The analysis presented here is best understood as the following sequence of broadly defined tasks: 

1. Establishment of the basic analysis framework using an un-faulted network 
a. Derivation of a system equation for a network without an earth fault present 
b. Understanding the equivalent circuit for the neutral voltage 
c. Derivation of steady-state amplitude of neutral voltage from the equivalent circuit 
d. Definition of the form of the transient solution – decay time and frequency 

2. Development of a full solution for a network with an earth fault 
a. Exploration of the changes that an earth fault causes in the equations  
b. Exploration of the changes that an earth fault causes in the neutral equivalent circuit 
c. Exploration of the behaviour of resonant earthed networks with earth faults 
d. Derivation of a general solution for neutral voltage with an earth fault 

i. Transient solution 
ii. Transient solution for low resistance faults 

iii. Steady-state solution 
e. Definition of the solution for particular initial conditions 

i. Fault occurrence at voltage zero-crossing 
ii. Fault occurrence at voltage peak 

3. Exploration of the effect of network imbalance on the neutral voltage 
4. Investigation of back-fed ‘wire down’ faults 

a. Fault detection sensitivity variation with neutral voltage threshold setting 
b. Fault detection sensitivity comparison of resonant earthing and solid earthing  

5. Comparison of analysis results with time domain simulation results 
6. Investigation of the effect of open-delta regulators on resonant earthed networks 

a. Fault detection through an open-delta regulator 
b. Generation of standing neutral voltage by open-delta regulators 

There are two patterns that have emerged in this overall analysis program of work: 

First, the basic analysis framework developed for an un-faulted network applies in every subsequent 
analysis. The same forms of solutions (transient and steady-state) continue to appear and each new 
situation simply produces adjusted values for the key parameters of decay time constant, network 
damping resistance, transient solution frequency, etc. This means that a thorough understanding of 
the analysis of the un-faulted network provides the basis for all subsequent results. 

Second, the derivation of a solution for each new network configuration follows the same process: 

• Develop the circuit diagram for the configuration under investigation 
• List all the voltage and current equations 
• Apply Kirchhoff’s Current Law to the neutral connection point 
• Use the voltage and current equations to reduce the resulting equation to functions of time 

and neutral voltage only 
• Compare the resultant neutral voltage equation to the basic one for the un-faulted network 

to infer the transient and steady-state solutions for this configuration. 
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This indicates the overall method set out in this document can be used to deal with future 
challenges, not just the ones covered here. 

Neutral voltage  with  no earth  fault  

As a first step it is worth developing a mathematical model of a resonant-earthed balanced three-
phase network in steady state with no earth fault.  

Equivalent circuit for phase voltages 

After the simplifying assumptions listed above, the system looks like Figure 1: 

Figure 1: balanced resonant network 

 

The various parameters are:     is the inductance of the arc suppression coil     is the capacitance to earth of each phase of the network     is the leakage resistance to earth of each phase of the network. 

Voltages 

The voltages of the three phase conductors with respect to earth will be equal to the neutral voltage 
plus a three-phase set of balanced voltages:   ( ) =   ( ) +      (  ) ( 1 ) 

  ( ) =   ( ) +         + 2 3   ( 2 ) 

  ( ) =   ( ) +         + 4 3   ( 3 ) 

Adding these three equations immediately yields:  
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  ( ) = 13 [  ( ) +   ( ) +   ( )] ( 4 ) 

Equation ( 4 ) was used in the Victoria’s 2014 REFCL Trial to derive the neutral displacement from 
field test records of the three phase voltages. It has also proven very useful in the following analysis. 

Currents 

The currents that will flow in each phase conductor will arise from the capacitance between each 
conductor and earth and the leakage currents between each conductor and earth: 

  ( ) =    ( )  +       ( )  +        (  ) +         (  ) ( 5 ) 

  ( ) =    ( )  +       ( )  +           + 2 3  +            + 2 3   ( 6 ) 

  ( ) =    ( )  +       ( )  +           + 4 3  +            + 4 3   ( 7 ) 

Since the neutral connection point is earthed through an inductor,   , then: 

  ( ) = 1      ( )     ( 8 ) 

System equation 

Application of Kirchhoff’s Current Law to the neutral connection point gives: 0 =   ( ) +   ( ) +   ( ) +   ( ) ( 9 ) 

So the system equation for the neutral voltage (after all the three-phase balanced sets of terms sum 
to zero) is: 

0 = 1      ( )    + 3     ( ) + 3      ( )   ( 10 )  

This second order linear differential equation for    ( ) describes a resonant parallel RLC circuit. It is 
more usually described (after differentiating and dividing through by   ) as: 

0 = 1       ( ) + 1        ( )  +     ( )    ( 11 ) 

Where    and    are total network parameters: 
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                                :   =   3  ( 12 ) 

                        :   = 3   ( 13 ) 

In real networks,    is slightly less than the value implied by per-phase leakage currents as the 
associated resistive current must supply other energy losses in the network, some of which are due 
to the series resistance of phase conductors and iron losses in the resonant inductor coil, etc. 
However, since    can never be directly measured, only    is of meaningful interest – it can be 
deduced from earth fault test results.  

Equivalent circuit for neutral voltage 

Solutions to the system equation ( 11 ) are useful when seeking to understand the transient 
response of the network when an earth fault is not present, e.g. when it is removed. Equation ( 11 ) 
describes the circuit shown in Figure 2: 

Figure 2: equivalent circuit for neutral voltage 

 

It can be seen there is no energy source in this system and any non-zero value of    ( ) will create 
energy loss through the current it causes to flow in resistor   . A trivial solution for Equation ( 11 ) 
is:    ( ) = 0, i.e. no neutral voltage displacement. As this particular solution sets the total energy of 
the system at zero, it will be the solution to which the system will naturally converge in the absence 
of any stimulus. 

Transient response of an un-faulted network 

In most networks,    is relatively large (i.e. energy leakage is low) so it is easy to postulate that the 
sudden application of a disturbance to the resonant system at time zero will create a transient 
oscillatory response which eventually decays away again to the stable solution   ( ) = 0. In such an 
under-damped system, we can consider a response in the general form of a decaying sinusoid:   ( ) =        sin(   +   )  ( 14 ) 

The first derivative of   ( ) is: 

   ( )  =          cos(   +   ) −         sin(   +   )  ( 15 ) 

The second derivative of   ( ) is: 
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    ( )   =         sin(   +   ) − 2          cos(   +   ) −          sin(   +   )  
( 16 ) 

These can be substituted in Equation ( 11 ) which can then be described as having: 

•         in all terms - so this expression can be divided out of the whole equation 
• Two terms containing cos(   +   ) and three terms containing sin(   +   ) . 

For Equation ( 11 ) to be satisfied at all times, the cos(   +   ) terms and the sin(   +   ) terms 
must separately sum to zero. The two conditions to be met for this to happen are: 0 =    −    −      +       ( 17 ) 0 =     − 2       ( 18 ) 

Equation ( 18 ) immediately gives us a value for the decay time constant of the transient solution and 
equation ( 17 ) then gives us the frequency of the transient solution:  =            ℎ                        =    = 2      ( 19 ) 

  =    (1 −   )   ( 20 ) 

Where damping factor  =       and system resonant frequency   =       . 

It can be seen that: 

1. The damping in the system (represented by a finite value for   ) reduces the frequency of 
the transient response below the resonant frequency of the system, i.e.   <   . 

2. The decaying sinusoid form of solution is not valid for  > 1 (as    decreases, the frequency 
first falls to zero and then becomes imaginary) and a non-oscillatory exponential decay 
transient is likely to be a more valid solution. 

3. If there is no damping (  = ∞), the transient response never dies away ( = 0) and the 
frequency of the transient response is the system resonant frequency (  =   ). 

The transient solution still has two degrees of freedom (   ,  ) which can be determined by initial 
conditions, using equations ( 14 ), ( 15 ) and ( 16 ).  

This solution will apply following removal of an earth fault. The form of the transient will depend 
upon whether the neutral voltage or the ASC coil current (or both) are non-zero at the instant of 
fault removal. For example, at time t = 0 let   (0) =     and   (0) =    . Equations ( 14 ), ( 10 ) 
and ( 15 ) then give: 
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      =    (  )  ( 21 )        = −  1  +        (  ) +        (  ) ( 22 )  

   = −     +        +      1 −            ( 23 ) 

This leads to the following solution for the two variables,     and   :    =    
                            and then:   =             

 

With a fault present, these two variables in the transient solution must be determined from initial 
conditions in a similar way, but this time using the full general solution as shown in a later section. 

Example: transient response of test system 

At the zone substation supplying the field test site, the parameters shown in Table 1 were found to 
apply: 

Table 1: Network parameters at zone substation supplying the field test site 

Parameter Formula Value 

ASC inductance   =   .            =                0.281 H 

Network capacitance   =  (   )   =        .     36.1 µF 

Network resistance Deduced from GFN tuning data  4,000 Ω        is the operating position of the ASC coil at resonance, expressed in amps. Applying Equations 
( 19 ) and ( 20 ), the characteristics of transients in the neutral voltage with no faults on the network 
are as shown in Table 2: 

Table 2: test network transient parameters with no earth fault 

Parameter Formula Value 

Transient decay time constant   = 2     and   =    0.29 seconds (γ = 3.45 s-1) 

Transient frequency  =      and   =    (1 −   ) 314.14 radians/s (ζ = 0.011) 

It can be seen that with no earth fault on the system, the decay rate of any oscillatory transient in 
the neutral voltage is relatively slow – it would take about two seconds (seven time constants) to die 
away to one thousandth of its original magnitude. Also, the frequency of any neutral voltage 
transient is very close to the resonant frequency of the system – only 0.003Hz different to 50Hz. It 
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would take more than a minute for the phase of the transient response waveform to drift 90°with 
respect to the network 50Hz waveforms. Given the transient lasts only two seconds, the frequency 
difference between    and    is unlikely to materially affect the transient response. 

Neutral voltage  with  an earth  fault  

With an earth fault on Phase A, the same mathematical modelling can be done as has been done 
above for the case without any earth fault. 

Equivalent circuit for phase voltages with an earth fault 

With a fault consisting of a constant linear fault resistance,   , on Phase A the network is now as 
shown in Figure 3: 

Figure 3: balanced resonant network with earth fault on Phase A 

 

Voltages with an earth fault 

The presence of the fault does not change the voltage equations as there is no series impedance in 
any of the phases of the network, i.e. Equations ( 1 ) to ( 3 ) above still apply. 

Currents with an earth fault 

The current that flows in the Phase A conductor will now have two extra terms due to fault current: 

  ( ) =    ( )  +       ( )  +        (  ) +         (  ) +    ( )  +        (  )  ( 24 ) 

The currents in the other two phases are unchanged, i.e. Equations ( 6 ) and ( 7 ) apply. The neutral is 
still earthed through the arc suppression coil inductance,   , so Equation ( 8 ) also still applies. 

System equation with an earth fault 

Applying Kirchhoff’s Current Law to the neutral connection point using Equations ( 24 ), ( 6 ), ( 7 ), 
and ( 8 ), the system equation for the neutral voltage with an earth fault is: 
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−        (  ) =    ∫    ( )    +     +        ( ) +       ( )    ( 25 ) 

Differentiating and dividing through by    gives: 

−           (  ) =         ( ) +           ( )  +     ( )     ( 26 ) 

Where     is an equivalent network leakage resistance to earth, equal to the resistance of the 
parallel combination of the fault resistance and the total network leakage resistance:    =            ( 27 ) 

Comparing Equation ( 26 ) to Equation ( 11 ) , it can be seen the presence of the earth fault changes 
the damping of the resonant system and adds a non-zero term on the left hand side. This term is 
called a forcing function because it represents injected energy which ‘forces’    ( ) to adopt a non-
zero solution.  

Equivalent circuit for neutral voltage with an earth fault 

Re-arranging Equation ( 25 ) slightly gives: −     sin(  ) −       ( ) =    ∫    ( )    +       ( ) +       ( )    ( 28 ) 

This second order linear differential equation for    ( ) describes a resonant parallel RLC circuit 
driven by a sinusoidal voltage source equal to the Phase A voltage acting through a resistance equal 
to the fault resistance, i.e. Equation ( 28 ) describes the circuit shown in Figure 4: 

Figure 4: equivalent circuit for neutral voltage with an earth fault 

 

 

Behaviour of resonant-earthed network with an earth fault 

A complete analysis of the general solution for    ( ) is set out in following sections, but there is an 
easy way to deduce the steady-state value of    ( ) from the equivalent circuit shown in Figure 4. 

As the neutral inductor    is assumed to be perfectly tuned to the network capacitance    at 50Hz, 
once any transient effects have died away the parallel combination of these two components will act 
as an open circuit (their 50Hz admittances cancel to zero) and the equivalent circuit for the neutral 
voltage is as shown in Figure 5:  

−  sin   
  

      
   

V
+

-
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Figure 5: equivalent circuit for neutral voltage in a perfectly tuned network with an earth fault 

 

So the neutral voltage, calculating the effect of the resistive voltage divider, is:    ( ) = −            sin(  )  ( 29 ) 

Using Equation ( 1 ), the voltage on the faulted conductor is:   ( ) =            sin(  )  ( 30 ) 

This simple equivalent circuit gives sensible results as   → ∞ and as   → 0, i.e. no fault and short 
circuit fault as shown in Table 3: 

Table 3: network with no fault and with short circuit earth fault 

Circumstance: No fault on network Short circuit on network      → ∞   → 0   ( )   ( ) → 0   ( ) → −  sin(  )        →       →   → 0 

Result: No neutral displacement 100% neutral displacement 

 

If   = 0, i.e. the earth fault is a short circuit, then Equations ( 1 ) and ( 24 ) become: 

  ( ) = 0 and   ( ) =    ( 31 ) 

Equation ( 31 ) gives an indeterminate result for the fault current   ( ), so it must be calculated 
instead using Kirchhoff’s current law as re-expressed in Equation ( 32 ).   ( ) = −  ( ) −   ( ) −   ( ) ( 32 ) 

This gives: 

  ( ) =         (  ) − [  ( ) +   ( )] 
  ( ) =  −         (  ) − [  ( ) +   ( )] 

( 33 ) 

where K is an integration constant. The currents in Phases B and C are: 

−  sin  
  

  
   

V
+

-
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  ( ) = −         (  ) −        (  ) +           +     +            +       ( 34 ) 

  ( ) = −         (  ) −         (  ) +           +     +            +       ( 35 ) 

It is useful to use: 0 =    (  ) +       +     +       +       

so: −    (  ) =       +     +       +       

and similarly: −    (  ) =       +     +       +      

( 36 ) 

Using these identities in Equations ( 34 ) and ( 35 ) gives:   ( ) +   ( ) = −       sin(  ) − 3     cos(  )  

So from Equation ( 33 ), we get:   ( ) =  +       −         (  ) +        (  )  ( 37 ) 

In the steady state,   ( ) will have zero DC component, so the integration constant K can be taken to 
be zero.    ( ) =       −         (  ) +        (  )  ( 38 ) 

The first term in Equation ( 38 ) is ‘mismatch current’ due to any tuning mismatch between the 
neutral inductor and the network capacitance. The second is network leakage current to earth. The 
two are related as shown in Figure 6. 

Figure 6: Vector addition of mismatch and leakage currents to form fault current 

 

If the neutral inductor is perfectly tuned to the network,     =    , the earth fault current is: 
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  ( ) =        (  )  ( 39 ) 

The earth fault behaviour of a resonant-earthed network is summarised in Table 4: 

Table 4: phase voltage and short circuit earth fault current in a resonant network 

Circumstance: No fault Short circuit fault 

Conductor voltage   ( ) =   sin(  ) Zero 

Fault current Zero   ( ) =     sin(  )  

This confirms a perfectly tuned balanced network exhibits the desired behaviour of a resonant-
earthed network: earth fault current is limited to a value equal to the resistive leakage current of the 
network to earth. 

Residual conductor voltage and fault current 

The values of neutral displacement, phase voltage and fault current can also easily be found for 
values of fault resistance that lie between open circuit and short circuit.  

The voltage on the faulted phase is given by Equation ( 30 ). The fault current reduces in the same 
proportion as the conductor voltage since the fault resistance is linear:   ( ) =            sin(  )  ( 40 ) 

  ( ) =   ( )  =           sin(  )  ( 41 ) 

Deduction of network parameters: FSH test data 

This offers a way to confirm the total network leakage resistance,   . If a ‘bolted’ earth-fault test 
using a known fault resistance reveals the steady-state reduction in conductor voltage, then the 
total network leakage resistance can be checked.  

The 2014 REFCL Trial included two series of ‘bolted’ fault tests in which the white phase was 
connected to earth eight kilometres from the zone substation through a high voltage series resistor 
which could be set at resistance values from 100 ohms to 15,200 ohms. 

Any standing neutral displacement due to network imbalance must be taken into account in the 
calculation. Standing neutral displacement is due to imbalance of network parameters (usually 
capacitance) across the three phases or in the three phase set of source voltages. The analysis of the 
2014 test records required vector subtraction of the standing neutral displacement voltage and is 
not set out here. 

Transient and  steady-state  solutions for a faulted network  

Because the system equation is linear, the general solution for the neutral voltage of a network in 
the presence of an earth fault on one phase can be derived using superposition. 
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Using superposition to get a general solution 

The general solution of Equation ( 26 ) can be derived as the sum of two parts: 

1. A transient solution of the equation: 

0 =         ( ) +           ( )  +     ( )     ( 42 ) 

Because the transient solution dies away to zero, there can be no forcing function. A forcing 
function would imply ongoing energy injection so the solution cannot die away to zero, i.e. a 
solution with a forcing function cannot be a transient solution. 
 

2. A steady state solution of the equation: 

−           (  ) =         ( ) +           ( )  +     ( )     ( 43 ) 

Since the forcing function is of constant amplitude over time, the response to it should also 
be of constant amplitude at the same frequency as the forcing function. 

Each of these solutions can be separately derived. 

Transient response of faulted network 

Comparing Equation ( 42 ) with Equation ( 11 ) and the transient solution given by Equations ( 14 ), ( 
19 ) and ( 20 ), it can be seen that the transient solution of a network with an earth fault is of the 
same form as that for the un-faulted network but with modified damping. The presence of the fault 
changes both the decay time constant and the frequency of the transient. In effect the fault 
resistance appears in parallel with the leakage resistance to define a new damping resistance,    . 

Example: transient response - test system with medium resistance earth fault 

With the 22kV test network parameters set out in Table 1, assume a 240 ohm earth fault – about 
equivalent to a fifty amp earth fault if the network were solidly earthed. The key parameters in the 
network transient response to the earth fault are set out in Table 5: 

Table 5: test network response to a 240 ohm earth fault 

Parameter Formula Value 

Fault resistance Hypothesised for fifty amp fault 250 Ω 

Equivalent network resistance    =            235 Ω  

Transient decay time constant   = 2     =     0.017 seconds (γ = 59 s-1) 

Transient frequency  =      and   =    (1 −   ) 308.6 radians/s (49.11Hz) 
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The decay is very rapid with the transient diminishing to 0.1% of its initial value in just 120ms. Also, 
the frequency of the transient is 0.9Hz away from the system frequency, so there may be a very 
slight ‘beating’ effect in the combination of the transient and steady-state elements of the solution, 
perhaps enough to move the envelope of the initial transient away from an exact exponential curve. 

The network decay time constant and the transient solution frequency vary with fault resistance as 
shown in Figure 7 which demonstrates that: 

1. At lower fault resistance values, the decay time constant is inversely proportional to fault 
resistance. For a 100 ohm fault, it is only nine milliseconds. 

2. At higher values of fault resistance, the decay time constant approaches the value that 
applies in an un-faulted network. 

3. The frequency of the transient response stays close to 50Hz until the fault resistance reduces 
below about 100 ohms.  

4. Generally, the transient response has died away to zero well before a single cycle of ‘beat’ 
frequency between the transient response frequency and the 50Hz network frequency. For a 
fault resistance of fifty ohms, the transient response has a frequency of 22.5Hz and a decay 
time constant of 3.6ms. The transient response would have diminished to 0.1% of its initial 
value in just 0.7 of a cycle of ‘beat’ frequency.  

Figure 7: variation of decay time constant and transient response frequency with fault resistance 

  

 This implies that any visible ‘beating’ in transient response waveforms is more likely due to tuning 
mismatch than the effect of the fault resistance on the transient response frequency. 

Transient solution for low resistance faults 

If    is very small, the transient response cannot have an oscillatory character since ζ > 1 in 
Equation ( 20 ) and the oscillation frequency    of the transient response would be imaginary. The 
threshold fault resistance at which this boundary is crossed is given by: 

 =   ,  .  . 12     =    which is:     =  12           1 +      = 12        

  =  12    +   2       which is:     1 − 12       =  12      
( 44 ) 

This gives the threshold value of   : 
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  ==   (         )  ( 45 ) 

For the test network parameters listed in Table 1, the threshold value of earth fault resistance is R = 44.6 ohms, representing a fault that in a solidly earthed network would draw 285 amps. In a 
resonant earthed network, faults with resistance less than this value have no oscillatory component 
in the transient response. 

For low-resistance faults, we should seek a solution for  v (t) of the form:   ( ) =      ∝   ( 46 ) 

   ( )  = −   ∝   ∝   ( 47 ) 

    ( )   =    ∝   ∝   ( 48 ) 

And Equation ( 42 ) becomes: 0 =           ∝ −            ∝ +    ∝   ∝   ( 49 ) 

Dividing by V    ∝ , this is a quadratic equation in ∝:  0 =      −       ∝ +∝   which is:  ∝ − 2 ∝ +   = 0  ( 50 ) 

This has the solution: ∝=   1 ±   √(  − 1)  where  =     ( 51 ) 

Equation ( 51 ) has two valid solutions for ∝, so the transient solution can be the sum of two 
exponential decay components:   ( ) =       ∝  +       ∝    ( 52 ) 

Where: ∝ =   1 +   √(  − 1)   ( 53 ) 

∝ =   1 −   √(  − 1)   ( 54 ) 

Equation ( 46 ) has two parameters V    and V    which can be determined to suit initial conditions 
when the general solution is fully defined. 

Example: transient response of test system with low resistance earth fault 

For the test network parameters set out in Table 1, assume a two ohm earth fault – about equivalent 
to a 1.3 kilo-amp earth fault if the network were earthed via an eight ohm NER (i.e. total earth fault 
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resistance is ten ohms). The key parameters in the network transient response to the earth fault are 
set out in Table 5: 

Table 6: test network response to a 10 ohm earth fault 

Parameter Formula Value 

Fault resistance Hypothesised  10 Ω 

Equivalent network resistance    =            9.975 Ω  

Damping factor ζ =    =             4.42 

Transient time constant 1   =  ∝   364 microseconds  

Transient time constant 2   =  ∝    27.9 milliseconds 

This example demonstrates that very low resistance faults (such as a high voltage conductor falling 
onto low voltage subsidiary spans that are solidly earthed through multiple earthed neutral 
connections in connected premises) can generate very fast transients. As fault resistance reduces, 

the two time constants separate. One approaches zero and one approaches        (the value of 

which is also reducing as the fault resistance reduces). 

Steady state solution of faulted network 

After the transient component of v (t) has died away, it will consist only of the steady-state 
solution. It is reasonable to look for a steady-state solution for Equation ( 43 ) of the form:   ( ) =       (  +   )  ( 55 ) 

The first derivative of   ( ) is then: 

   ( )  = −       (  +   )  ( 56 ) 

and the second derivative of   ( ) is: 

    ( )   = −     cos(  +     ) ( 57 ) 

The system Equation ( 43 ) then becomes: −           (  ) =           (  +   ) −             (  +   ) −         (  +   )  ( 58 ) 

This can be rewritten: 
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          (  ) = 2        (  +   ) + (  −   )      (  +   )  ( 59 ) 

Where, as before with the earth fault present, the value of the network damping resistance is    , 
so:    =        and   =         ( 60 ) 

Two trigonometric identities can be used to expand the (  +   ) sinusoid terms in Equation ( 59 ): sin(  +   ) ≡ sin  cos  + cos   sin    cos(  +   ) ≡ cos  cos  − sin  sin    

Using these two identities, we get two equations, one of all the terms that include sin   and one of 
all the terms that include cos  . Both have to be separately satisfied for Equation ( 58 ) to be 
satisfied for all instants in time: 

       =     [  −    ]      + 2            ( 61 ) 0 = −    [  −    ]      + 2            ( 62 ) 

Equation ( 62 ) can be written: 

  =                     ( 63 ) 

Again, convenient trigonometric identities can be used to define cos   and sin  : 

cos  ≡  √(        ) =         √                   sin  ≡      √(        ) =    √                   
Substituting the above values of cos  and sin  in Equation ( 61 ) gives: 

       =     [(  −    )      + 2       ] =     √[(  −    ) + 4    ]  ( 64 ) 

Using Equation ( 19 ) with     substituted for   , the amplitude of the steady state resonant 
response can be written:     =        √                 =           √                 =         √                    ( 65 ) 

Testing this result, it can be seen that for a perfectly tuned system where  =   , Equation ( 65 ) 
reduces to:  
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    =         =             ( 66 ) 

This is the same result as Equation ( 29 ).  

Example: steady state resonant response of FSH network 

Using the test network parameters shown in Table 1, Equations ( 63 ) and ( 65 ) describe the steady-
state resonant response shown in Figure 8. 

Figure 8: test network steady-state resonant response (for different values of fault resistance) 
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At resonance, the phase of the neutral voltage is 90°, i.e. it acts to (partially) cancel the Phase A 
voltage: 

  ( ) =       (  + 90°) = −   sin  = −            sin    ( 67 ) 

  ( ) =   ( ) +   sin  =    1 −       sin  =             sin    ( 68 ) 

Equation ( 67 ) shows that the neutral voltage rise due to a fault depends on the network damping, 
represented by resistance   . Figure 8 shows neutral voltage sensitivity for the test network with a 
network damping resistance   = 4000 . Figure 9 shows the test network resonance response 
with no damping and with heavy damping. It can be seen that the network damping determines the 
sharpness of the resonance curve.  

Figure 9: resonance of test network neutral voltage for no network damping (  = ∞) 

 

Figure 10: resonance of test network with heavy damping (  = 500 ) 
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One measure of the sharpness of the resonance curve is the difference between the two frequencies 

at which the amplitude of     is  √  of the maximum amplitude. These frequencies can be derived 

from Equation ( 65 ) which can be written out and manipulated as follows: 

 √                  =  √   so:               = 1  so: 
           = ±1 so: (  −   ) = ±2    

(  −   ) = ( −  )( +   ) ≅ 2  ( −  ) ≅ 2 ( −  )     ≈     

So: ( −   ) = ±   or:  =   ±    

So the width of the resonance curve 30% below the peak value is approximately: 2 =       .  

General solution for a  faulted network  

For medium and high fault resistances, the transient solution of Equation ( 14 ) and the steady-state 
solution of Equation ( 55 ) can be added together to produce a general solution for v (t):   ( ) =           (   +   ) +       (  +   )  ( 69 ) 

Where  ,   ,     and    are defined by Equations ( 60 ), ( 20 ), ( 65 ) and ( 63 ) respectively. The two 
remaining variables,  V   and φ  define the transient part of the solution and must be chosen to suit 
the initial conditions, i.e. the conditions at t = t , the instant at which the fault occurs. If the fault 
resistance is equal to or lower than the threshold value given by Equation ( 45 ), then the transient 
solution of Equation ( 52 ) should be substituted for Equation ( 14 ). The discussion below deals with 
fault resistance values higher than the threshold value. 

Transient parameters to suit initial conditions 

Two initial conditions can be used to define the transient response fully: 

1. Zero neutral voltage: Assume the system was in steady state with no neutral voltage prior to 
the fault. Because of the presence of capacitance from each phase to earth, none of the 
network voltages can change instantaneously when the fault occurs, so the neutral voltage is 
also zero at the instant of the fault, i.e. v (t ) = 0. This condition can be used with Equation 
( 69 ) to provide a relationship between V   and φ . 0 =                 +    +           +      ( 70 ) 

2. Zero neutral inductor current: The current in inductor L  cannot change instantaneously. 
Given the neutral voltage was zero at all instants prior to the fault occurrence, the current in 
the inductor is also zero when the fault occurs.  

Equation ( 25 ) shows that since v (t = t ) = 0 and i (t = t ) = 0, then     ( )  = 0 at t = t .  
To use the second of these initial conditions, we use Equations ( 15 ) and ( 56 ): 
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0 =                   +    −                  +    −           +      

( 71 ) 

Equations ( 70 ) and ( 71 ) can be solved together to find V   and φ . Consider two cases: 

Fault occurrence at zero phase voltage 

In this case, the fault occurs at a zero crossing in the Phase A voltage waveform and   = 0. 
Equations ( 70 ) and ( 71 ) can then be written: 0 =       (  ) +       (  )  ( 72 ) 0 =         (  ) −        (  ) −       (  )  ( 73 ) 

If the network is perfectly tuned, then by Equation ( 63 ), φ =  2  . Using this in Equation ( 72 ) 
indicates that φ = 0, so using Equation ( 66 ), Equation ( 73 ) becomes:    =             ( 74 ) 

Substituting these values for V   and φ  into Equation ( 69 ), the full solution is thus:   ( ) = −            (  ) −           (   )   ( 75 ) 

For high resistance faults, we know from Figure 7, ω ≅    so this result is a simple one:   ( ) = −        (1 −     )    (  )  ( 76 ) 

Using Equation ( 1 ), the voltage on the faulted phase conductor is: 

  ( ) =     1 −        (1 −     )    (  )  ( 77 ) 

For lower resistance faults, both the neutral voltage and the phase voltage will depart slightly from 
this solution due to the slight difference between    and ω. 
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Figure 11: calculated test network faulted-phase voltage response to 600 ohm fault 
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The currents that flow in the three phase conductors are:   ( ) =    ( )   +       ( )  +       sin(  ) +       cos(  )  ( 80 ) 

  ( ) =    ( )   +       ( )  +       sin    +     +       cos    +       ( 81 ) 

  ( ) =    ( )   +       ( )  +       sin    +     +       cos    +       ( 82 ) 

The three phase sets of sinusoidal terms no longer cancel to zero. The effect of this is to add a 
sinusoidal current term to the equation. This acts as a forcing function to produce a standing neutral 
displacement voltage. This additional current term due to imbalance can be summarised by:     ( ) =     sin(  +  ) =       sin(  ) +       sin    +     +       sin   +     +      cos(  ) +       cos    +     +       cos    +       

( 83 ) 

So the equation for    ( ) becomes:     ( ) =    ∫    ( )    +       ( ) +       ( )    ( 84 ) 

Where total network capacitance and total network resistance are now defined as: Total network damping resistance:   =                    ( 85 ) 

Total nework capacitance:   =   +   +    ( 86 ) 

Comparing equation ( 84 ) to equation ( 28 ) reveals that the imbalance current     ( ) acts as a 
forcing function in a similar way to the forcing function created by fault current in equation ( 28 ). As 
it is made up of 50Hz sinusoidal terms, it will produce a sinusoidal neutral voltage. The phase and 
magnitude of this forcing function will depend on the degree of imbalance and its precise 
distribution across the three phases.  
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If the neutral inductor is perfectly tuned to resonate with total network capacitance at 50Hz, then 
the standing neutral voltage displacement will be:    ( ) = −      sin(  +  )  ( 87 ) 

Any neutral voltage displacement due to a fault will add vectorially to this standing value to produce 
the final neutral voltage displacement in the faulted state. This means the standing neutral voltage 
displacement will influence the residual fault current, so it is of some interest to calculate it. 

Trigonometric identities can be used to derive the components of     ( ) that are in phase with the 
Phase A voltage   ( ) (those that contain sin  ) and those that are in quadrature with it (those that 
contain cos   ). The applicable identities are set out in the following table: 

sin( +  ) = sin cos + cos sin   
sin    +     = sin  cos    + cos  sin      sin    +     = sin  cos    + cos  sin      

cos( +  ) = cos cos − sin sin   
cos    +     = cos  cos    − sin  sin      cos    +     = cos  cos    − sin  sin      

sin    = √   and sin    = − √   cos    = −   and cos    = −    

sin    +     = −   sin  + √  cos    sin    +     = −   sin  − √  cos    cos    +     = −   cos  − √  sin     cos    +     = −   cos   + √  sin     

These identities can be substituted into Equation ( 83 ) to transform the imbalance forcing function 
into a more useful form:  

    ( ) =        − 12       − 12       − √32       + √32        sin(  ) + 

       − 12       − 12       + √32       − √32        cos(  ) 

( 88 ) 

Equation ( 88 ) reveals that standing neutral displacement in an unbalanced network is generally 
zero only when network resistances, capacitances and voltages are all balanced. The industry focus 
is generally on capacitive imbalance due to two-wire spur lines. If we assume voltage and resistive 
imbalance is zero, the imbalance current due to capacitive imbalance is: 

    ( ) =    2  √3[  −   ] sin(  ) + [2  −   −   ] cos(  )  ( 89 ) 

The magnitude of this current is: |    ( )| =    2 √{3[  −   ] + [2  −   −   ] } |    ( )| =    √    +    +    +   (  −   ) +   (  −   )  
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In the test network the standing neutral voltage was often around 900 volts, implying (using the 
values in Table 1), a standing neutral current of two amps if the network was solidly earthed. 

Analysis of  ‘wire  down’  back-fed faults  

When a conductor breaks and falls to the ground, if the fallen conductor is connected to the network 
at the ‘downstream’ pole of the fallen span and there is no earth fault on the ‘upstream’ side of the 
break, then earth fault current can flow due to the customer load connected between phases 
downstream of the break.  

This is called a back-fed ‘wire down’ earth fault and is illustrated in Figure 12. 

Figure 12: Wire-down back-fed earth fault 

 

The equations that apply in this situation are: 

Voltage equations 

Equations ( 1 ) to ( 3 ) apply, as well as an equation for the voltage on the fallen conductor: 
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  ( ) =   ( ) +      (  ) ( 90 ) 

  ( ) =   ( ) +         + 2 3   ( 91 ) 

  ( ) =   ( ) +         + 4 3   ( 92 ) 

  ( ) =     ( )  ( 93 ) 

Current equations 

The current equations now have additional terms and additional equations for load currents and 
fault current: 

  ( ) =    ( )  +       ( )  +        (  ) +         (  ) ( 94 ) 

  ( ) =    ( )  +       ( )  +           + 2 3  +            + 2 3  +    ( )−    ( ) 
( 95 ) 

  ( ) =    ( )  +       ( )  +           + 4 3  +            + 4 3  +    ( )−    ( ) 
( 96 ) 

  ( ) = 1      ( )     ( 97 ) 

  ( ) =    ( ) −    ( )  ( 98 )    ( ) =        ( ) −   ( )   ( 99 ) 

   ( ) =     [  ( ) −   ( )]  ( 100 ) 

   ( ) =        ( ) −   ( )   ( 101 ) 

Applying Kirchhoff’s current law to the neutral connection gives: 0 =   ( ) +   ( ) +   ( ) +   ( ) ( 102 ) 

This is: 

0 = 1      ( )    + 1     ( ) +       ( )  +    ( ) −    ( ) ( 103 )  

The last term in Equation ( 103 ) is simply i (t) which equals: 
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  ( ) =    ( ) −    ( ) =        ( ) +   ( ) − 2  ( ) =     [  ( ) +   ( )] −        ( )  
( 104 )  

Equation ( 104 ) yields:   ( ) =         [  ( ) +   ( )]  ( 105 )  

Using Equations ( 91 ) and ( 92 ) for [v (t) + v (t)] gives:   ( ) =          2  ( ) +          +     +       +         ( 106 )  

To simplify this, we can use: 0 = sin(ωt) + sin ωt +     + sin  ωt +     , to get: 

  ( ) =          2  ( ) −      (  )   ( 107 )  

The system equation is now: 

               (  ) =    ∫    ( )    +     +                ( ) +       ( )    ( 108 )  

After differentiation and division by C , this gives: 

             (  ) =         ( ) +             ( )  +     ( )     ( 109 )  

Where:      =           =                ( 110 )  

    =      +     ( 111 )  

Comparing Equation ( 108 ) to Equation ( 25 ) and comparing Equation ( 109 ) to Equation ( 26 ) 
indicates the system response will be of the same form as that of a system with a normal earth fault, 
with some adjustments to the parameters: 

1. The effective fault resistance is the actual fault resistance R  plus half the phase-to-phase 
resistance R   that represents the load on the network downstream of the fault location. 

2. The forcing function has half the amplitude of that which applies with a normal fault on Phase 
A and is in quadrature to it, i.e. the neutral voltage displacement will be about half what 
would occur if the fault was not back-fed. This means fault detection of back-fed faults is at 
best only half as sensitive as detection of normal faults of the same fault resistance. 

If the network is perfectly tuned to the system frequency, then at resonance, the capacitive and 
inductive current terms in Equation ( 108 ) cancel each other, leaving:  
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   ( ) =                 (  )  ( 112 )  

Which allows the fault current to be determined using Equation ( 107 ): 

  ( ) = −      (  )               ( 113 )  

Detection of  back-fed earth  faults  

The challenge of back-fed fault detection is well known. The following analysis compares the 
capability of resonant earthed networks that use neutral voltage rise for earth fault detection with 
solidly earthed networks that use zero-sequence over-current detection.  

Resonant earthed networks 

In a resonant earthed network, the fault is detected by neutral voltage displacement. Let the 
threshold of detection be k%. Using Equation ( 112 ), detection will occur if: 

          ≥       ( 114 )  

The threshold can be drawn as a boundary on a map of nominal fault current (the fault current that 
would be drawn by the same ‘wire on ground’ fault as a normal, i.e. not back-fed, fault of the same 
fault resistance in a solidly earthed network) versus customer load downstream of the fault. The two 
dimensions in Figure 13 are: 

Y-coordinate: Nominal fault current equal to 12.7kV divided by the fault resistance R . 
X-coordinate: Downstream load equal to  ×      , where R   is the phase-phase load resistance. 

Figure 13: Detection of back-fed faults in resonant earthed networks (test network parameters) 
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• On the test network with standard fault detection sensitivity settings (k=30%) a resonant 
earthed system will only detect a back-fed five amp fault if downstream load is greater than 
about five megawatts. This might only occur if the fault is close to the zone substation and 
customer demand is high. 

• If higher sensitivity is used (k=20%) then a five amp back-fed fault can be detected even if 
downstream customer load is as low as 200 kilowatts. 

• At maximum feasible sensitivity (k=10% - not generally feasible with today’s products) a 
resonant earthed system will detect a one amp back-fed fault if customer load downstream 
of the fault is greater than about 200kW or a five amp back-fed fault with downstream 
customer demand as low as 75kW. 

Comparison: Solidly earthed networks 

With no inductor and the neutral point solidly connected to earth,   ( ) = 0 and the voltage and 
current equations are:   ( ) =      (  ) ( 115 ) 

  ( ) =         + 2 3   ( 116 ) 

  ( ) =         + 4 3   ( 117 ) 

  ( ) =     ( )  ( 118 ) 

  ( ) =        (  ) +         (  ) ( 119 ) 

  ( ) =           + 2 3  +            + 2 3  +    ( ) −    ( ) ( 120 ) 

  ( ) =           + 4 3  +            + 4 3  +    ( ) −    ( ) ( 121 ) 

  ( ) = −[  ( ) +   ( ) +   ( )] = [   ( ) −    ( )] = −  ( ) ( 122 )    ( ) =        ( ) −   ( )   ( 123 ) 

   ( ) =        ( ) −   ( )   ( 124 ) 

  ( ) =    ( ) −    ( ) =        ( ) +   ( ) − 2  ( )   ( 125 ) 

So: 
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  ( ) =               (  )  ( 126 )  

In a similar manner to Figure 13 above, the Sensitive Earth Fault (SEF) protection system detection 
threshold can be mapped for various settings of SEF relay minimum operation current. Figure 14 
shows the fault detection boundary for various SEF minimum operating current settings compared 
with normal resonant earth setting (30%) and heightened sensitivity setting (20%).  

Figure 14: comparison: detection of back-fed faults in solidly earthed versus resonant earthed 
networks 

  

This comparison indicates that, compared to solidly earthed networks with SEF protection, resonant 
earthed networks have superior capability to detect back-fed faults in challenging situations where: 

• Downstream customer load is low; and/or,  
• Fault resistance is high. 
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recommend the feeder be tripped as soon as a back-fed fault is detected, i.e. residual current 
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• Total customer load downstream of the broken conductor is 0.5MW, i.e. 167kW per phase. 
• Fault resistance is 2,000 ohms, i.e. a high impedance fault (nominally 6.4 amps) 
• Network damping resistance is 4,000 ohms, i.e. earth leakage from each phase is 12,000 

ohms. 

The phase-to-phase resistance due to customer load is: 

   = (  ,         )    ,         = 2,904  ℎ    ( 127 )  

So for the back-fed fault, the new values of fault resistance and damping resistance are:     = 2,000 +    × 2,904 = 3,452  ℎ    ( 128 )       =  ,   × ,   ( ,     ,   ) = 1,853  ℎ    ( 129 )  

The time domain simulation model is shown in Figure 15. 

Figure 15: time domain simulation model for earth faults in resonant earthed network 

  

The model was run for one second of simulated time with a time step of one or two microseconds. 
The two switches allowed both normal and back-fed earth faults to be simulated. Time constants 
were measured from plots as the time it took for the amplitude of the 50Hz waveform to reach 63% 
of its final value, i.e. this measurement is not as precise as other values derived from the 
simulations. 

Back-fed earth fault comparison 

The comparison results for a back-fed fault are shown in Table 7. In this simulation, switch SW2 
remains open and switch SW1 changes state 40 milliseconds into the simulation.  
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Table 7: comparison of earth fault theory and simulation results: back-fed fault 

Parameter Equation Theory result Simulation result Difference (%) 

Fault current ( 113 ) 0.852 A (rms) 0.862 A (rms) 1.2 % 

Neutral voltage ( 112 ) 3.409 kV (rms) 3.375 kV (rms) 1.0 % 

Phase C voltage ( 90 ) 16.112 kV (rms) 16.01 kV (rms) 0.6 % 

Time constant τ =  2R    C  0.1338 seconds 0.1385 seconds (est) 3.7 % 

It can be seen that the action of the resonant earthing is to reduce the voltage on the two 
undamaged phases and in consequence, increase the voltage on the phase with the fallen 
conductor.  

Normal earth fault comparison 

The comparison results for a normal earth fault are shown in Table 8. In this simulation, switch SW1 
remains in the state shown in Figure 13 and switch SW2 changes state 40 milliseconds into the 
simulation to apply the fault. 

Table 8: comparison of earth fault theory and simulation results: normal earth fault 

Parameter Equation Theory result Simulation result Difference (%) 

Fault current ( 41 ) 2.117 A (rms) 2.140 A (rms) 1.1 % 

Neutral voltage ( 29 ) 8.467 kV (rms) 8.421 kV (rms) 0.5 % 

Phase C voltage ( 30 ) 4.234 kV (rms) 4.309 kV (rms) 1.8 % 

Time constant τ =  2R  C  0.108 seconds 0.097 seconds 11.3 % 

Comparison of  theory and  distributed element simulation model  

A generic rural network was defined. It comprised five identical 22kV feeders of 93 kilometre length. 
Each feeder started in a medium size country town, extended to supply a second smaller town 30 
kilometres distant using typical ‘backbone’ aluminium conductor, then extended a further 25 
kilometres using thinner aluminium conductor to supply an even smaller town, then extended 30 
kilometres into sparsely populated territory using steel conductor. The model of each feeder 
comprised 19 sections of 5 kilometres each.  

Customer load and mutual capacitance between phases was not represented in the model. The 
leakage resistance to earth from overhead line sections was assumed to be of magnitude equal to 
2% of the capacitive current to earth of the same section.  

The model grouped identical sets of elements to produce the structure shown in Figure 17 on page 
36. 
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Tuning and DC shunt resistance 

The ASC tuning was checked using a frequency domain sweep and it was confirmed that a coil 
inductance of 665mH created resonance in the model at 50.08 Hertz as shown in Figure 16. This 
gave a value for Cn of 15.187µF which is 0.6% larger than the calculated total of all capacitances to 
earth in the model, 15.095µF.  

Figure 16: generic rural network model – coil tuning check 

 A neutral DC injection simulation confirmed the effective total shunt resistance to earth is 10,542 
ohms. However, the time-domain simulations demonstrated the value of Rn was much lower than 
this due to energy losses in the series resistance of the phase conductors.  

 Simulation of a remote 6400 ohm earth fault 

An initial simulation was for 1.0 seconds with a step length of 5µs. A fault of resistance 6400 ohms 
was applied at the junction of the aluminium and steel conductor, i.e. 65 kilometres from the source 
zone substation. The waveforms of neutral voltage and fault current are shown in Figure 18.  

The final value of neutral displacement voltage was 7.066 kilovolts and the final value of fault 
current was 0.8779 amps. The final value of the voltage on the faulted phase (at the fault location) 
was 5.674kV. All these measurements are rms quantities calculated by Circuit Lab Pro over a 
100.0ms interval towards the end of the simulation period. These values were used to obtain a value 
for the network damping resistance and compare the calculated transient decay time constant 
against theory.
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Figure 17: model of generic rural network 

 

  

Model detail: source zone substation Model detail: fault location 
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Figure 18: 6400 ohm fault at remote location on generic network (5µs step) 

 

 

 

The simulation results were analysed using the theory developed for a lumped element network 
representation to see if the two are consistent. The results of this analysis are shown in Table 9: 

Table 9: analysis of simulation results for 6400 ohm remote fault on distributed element model 

Quantity Derivation Result Comment 

Rn Faulted phase volts 
using Equation ( 30 ) 

7,927 ohms 

The three values for Rn fall within a 1.8% 
range, with an average value of 8,007 ohms. 
This value is 24% less than the effective total 
DC shunt resistance of the network to earth. 

Rn Neutral volts using 
Equation ( 29 ) 

8,024 ohms 

Rn Fault current using 
Equation ( 39 ) 

8,069 ohms 

Req Rn (average) 3,557 ohms  

τon Rn and Cn using 
Equations ( 19 ), ( 27 )  

108.0 ms This is 0.2% different to the 107.8 ms value 
measured from the neutral voltage waveform. 

The analysis uses the following re-written equations: 

  =       |  ( )|     ( 130 ) 

  =      |  ( )| − 1   ( 131 ) 
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  =      ( ) −     ( 132 ) 

   =              ( 133 )    = 2       ( 134 )     = 2      ( 135 ) 

The simulation demonstrates that: 

• The generic rural network is quite sensitive - a 0.9 amp fault located 65 km from the 
substation produces a neutral displacement voltage equal to 56% of nominal. This because 
of the network’s small ‘electrical size’ due to the relatively minor proportion of underground 
cable. 

• The value of network damping resistance derived from the simulation is significantly lower 
than the DC shunt resistance to earth. This is because it has to account for energy losses in 
series resistance in the network conductors. 

Effect of simulation time step length 

The neutral voltage, faulted-phase voltage and fault current were simulated over a longer period to 
allow analysis of the transient following removal of the fault. It proved not possible to do such long 
simulations at a time step of 5µs, so a 20µs time step was used to reduce computation times to 
reasonable levels. This changed the rms values of the quantities in the simulation somewhat as 
shown in Table 10. 

Table 10: comparison of simulation results for different time step durations 

Time step: 5 µs 20 µs Change 

Neutral displacement voltage: 7.066 kV 6.549 kV -7.3% 

Faulted phase voltage: 5.674 kV 6.190 kV +9.1% 

Fault current: 0.8779 A 0.9672 A +10.2% 

So a longer step length in the simulation increases the fault current and reduces the neutral 
displacement, i.e. it reduces the value of the network damping resistance. The fault current implies a 
value for Rn of 6,733 ohms, which is 17% less than the value derived from the fault current in the 
simulation with a 5µs step. 

Transient response to fault removal 

The waveforms for a 6,400 ohm earth fault occurrence at 0.025 seconds and removal at 0.750 
seconds are shown in Figure 19. These are from the 2.5 second simulation with a step size of 20µs. 
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Figure 19: generic rural network - occurrence and removal of 6400 ohm fault 

 

 

The transient time constants were measured by inspecting the waveforms to find the time at which 
the transient had reduced by 63.2% of its initial magnitude. The precise time was derived by 
interpolation between the two nearest waveform peaks. The measured time constants and the 
theoretical calculated values derived from the values in Table 10 using the average value of Rn 
derived from the measured values set out in the 20µs column of Table 10. 

Table 11: fault occurrence and removal time constants (6400 ohm fault 20µs time step) 

Quantity Derivation Result Comment 

Rn Faulted phase volts 
using Equation ( 30 ) 

6,733 ohms 

Values are within a 1.2% range, average value 
is 6,759 ohms. This is 36% less than the total 
DC shunt resistance of the network to earth. 

Rn Neutral volts using 
Equation ( 29 ) 

6,812 ohms 

Rn Fault current using 
Equation ( 39 ) 

6,733 ohms 

Req Rn (average) and Rf 3,287 ohms  

τon Req and Cn using 
Equations ( 19 ), ( 27 )  

99.8 ms This is 1.2% shorter than the 101 ms value 
measured from the neutral voltage waveform. 

τoff Rn and Cn using 
Equation ( 19 ) 

206.9 ms This is 3.5% longer than the 200 ms value 
measured from the neutral voltage waveform. 

These comparisons show that while time domain simulation is moderately sensitive to step length, 
the measurement derived from it form an internally self-consistent set. 
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Simulation of remote 3,200 ohm earth fault 

The same simulation was run for a 3,200 ohm earth fault. The fault current was 1.273 amps and the 
neutral displacement was 8.633kV. The analysis results are shown in Table 12. 

Table 12: fault occurrence and removal time constants (3200 ohm remote fault 20us time step) 

Quantity Derivation Result Comment 

Rn Neutral volts using 
Equation ( 29 ) 

6,789 ohms 
The average Rn is 6,784 ohms and the two 
derived values are within a 0.3% range around 
this value Rn Fault current using 

Equation ( 39 ) 
6,778 ohms 

Req Rn (average) and Rf 2,174 ohms  

τon Req and Cn using 
Equations ( 19 ), ( 27 )  

66.0 ms This is 0.2% longer than the 65.9 ms value 
measured from the neutral voltage waveform. 

τoff Rn and Cn using 
Equation ( 19 ) 

206.1 ms This is 1.3% longer than the 203 ms value 
measured from the neutral voltage waveform. 

So the agreement of the simulation with theory is again excellent. 

Conclusion: simulations support theory 

Overall, it was concluded that the theory developed from the lumped element model is useful in 
deriving results from simulations using a much more complex distributed element model of a 
generic rural network. The assumptions used in the theoretical development appear sound. 

Line capacitance beyond an open-delta voltage regulator  

Normally voltage regulators are positioned mid-way along the length of long rural high voltage 
feeders so that part of the total network capacitance to earth is located downstream of them. This 
situation is illustrated by the time domain simulation model shown in Figure 20. 
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Figure 20: capacitance to earth beyond an open-delta voltage regulator 

 

Without any fault on this system, i.e. switch SW2 open, the neutral voltage displacement can be 
extreme as shown in Figure 21 where it reaches 28.0 kV with a balanced turns ratio of 1.1/1.1 and 
downstream load of 0.5MW. The network time constant is 0.275 seconds. The neutral voltage rise is 
not dependent on downstream load – exactly the same result is obtained when the load is removed. 

Figure 21: neutral voltage rise with capacitance to earth downstream of open-delta regulator 

 To understand the cause of such a large over-voltage, we can use the same analysis technique set 
out in earlier sections of this document. We ignore any downstream customer load and analyse the 
network in an un-faulted state. For simplicity, we assume half the network-to-earth capacitance is 
downstream of the open-delta regulator and half upstream.  

For theoretical analysis, we use the model illustrated in Figure 22. 
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Figure 22: open-delta regulator with both upstream and downstream line capacitance and leakage 

  

To avoid complexity in the equations, the same phase-to-earth capacitance and leakage resistance 
has been assumed on either side of the regulator. It should be recognised that the parameters 
shown must be halved if total network capacitance and leakage is to be similar to previous analyses. 
Because of the non-unity turns ratio of the voltage regulator, there are more equations required to 
fully describe the model. 

Voltage equations 

The equations for voltages shown in Figure 22 are: 

Upstream:   ( ) =   ( ) +      (  ) ( 136 ) 

  ( ) =   ( ) +         + 2 3   ( 137 ) 

  ( ) =   ( ) +         + 4 3   ( 138 ) 

  ( ) +   ( ) +   ( ) = 3  ( )  ( 139 )   ( ) +   ( ) = 3  ( ) −   ( )  ( 140 ) 

Downstream:    ( ) =    ( ) +  [  ( ) −   ( )] =    ( ) − ( − 1)  ( )  ( 141 )    ( ) =   ( )  ( 142 )    ( ) =    ( ) +  [  ( ) −   ( )] =    ( ) − ( − 1)  ( )  ( 143 ) 

This gives a result that will prove useful in simplifying the analysis: 

    

      
            

      

  

   1:  
1:     
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[   ( ) +    ( ) +    ( )] = 3  ( ) − 3( − 1)        +       ( 144 ) 

Current equations 

The equations for currents shown in Figure 22 are:  

Upstream: 

  ( ) = 1    ( ) +       ( )  +    ( ) ( 145 ) 

  ( ) = 1    ( ) +       ( )  +    ( ) ( 146 ) 

  ( ) = 1    ( ) +       ( )  +    ( ) ( 147 ) 

Downstream:    ( ) =       ( ) +        ( )    ( 148 ) 

   ( ) =       ( ) +        ( )    ( 149 ) 

   ( ) =       ( ) +        ( )    ( 150 ) 

[   ( ) +    ( ) +    ( )] =    [   ( ) +    ( ) +    ( )] +      [   ( ) +    ( ) +   ( )]  
( 151 ) 

Voltage regulator:    ( ) +    ( ) +    ( ) =    ( ) +    ( ) +    ( )  ( 152 ) 

At supply transformer neutral: 

  ( ) = 1      ( )     ( 153 ) 

System equation 

The system equation is an equation in  v (t) derived by applying Kirchhoff’s Current Law to the 
neutral connection point: 0 =   ( ) +   ( ) +   ( ) +   ( ) ( 154 ) 

Using Equations ( 145 ) to ( 147 ) and Equations ( 136 ) to ( 138 ), this is: 
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0 =    ∫    ( )    +      ( ) + 3     ( )  + [   ( ) +    ( ) +    ( )]  ( 155 ) 

Using Equations ( 152 ) and ( 151 ) followed by Equation ( 144 ) and remembering the total network 

quantities are: C = 6C  and R =    , we can write this: 

0 = 1      ( )    + 1    ( ) +      ( )  − ( − 1)  2         + 2 3  +           + 2 3    ( 156 ) 

Differentiating and dividing by C  gives: 

−   (   )            +     +           +      =         ( ) +         ( )  +    ( )     
( 157 )  

Comparing this system equation with Equation ( 43 ) and Equation ( 11 ) reveals the following 
features: 

1. The resonant frequency and transient time constant are both the same as those of an un-
faulted network without a voltage regulator. 

2. Even without a fault on the network, if n ≠ 1, there can be a substantial forcing function to 
produce a large neutral voltage displacement. 

The amplitude of the neutral displacement in an un-faulted network with an open-delta voltage 
regulator can be derived from Equation ( 156 ), remembering that provided the network is perfectly 
tuned, at resonance the integral and derivative terms cancel to zero. This gives: 

  ( ) = − (   )          +     +             +        ( 158 ) 

|  ( )| = − (   )    1 + (      )   ( 159 ) 

For n=1.1 and the test network parameters, this is 28.8kV rms. The time domain simulation is shown 
in Figure 21 and the neutral voltage settles to 28.0kV rms after a build-up with an estimated time 
constant of 0.27 seconds, i.e. the discrepancy in amplitude is around 3% and the discrepancy in time 
constant is 7%.  

It may not be realistic to postulate a 50/50 split of the total network capacitance distributed to 
either side of the voltage regulator. A simulation with a 90/10 split (upstream/downstream) was also 
run for a balanced turns ratio of 1.1 and the result was 4.65kV rms neutral displacement, rising to 
that level with a time constant of 0.28 seconds. A 10/90 split produced a neutral displacement of 
51.3kV rms.  

Comparison: Open delta regulators in solidly (and NER) earthed networks 

If the neutral is solidly earthed, the neutral voltage is constrained to be zero. Equation ( 156 ) is then: 



D R A F T   P a g e  | 45 

 

© Marxsen Consulting Pty Ltd  February 2015 

  ( ) = (   )            +     +            +        ( 160 ) 

|  ( )| = (   )      1 + (      )   ( 161 ) 

This is the neutral voltage displacement that would occur in the network if it were resonant earthed 
as given by Equation ( 158 ), divided by the network damping resistance R .  

A time-domain simulation with the inductor replaced by a one ohm resistor and a 90/10 
upstream/downstream split of the network with a turns ratio of 1.1 shows a neutral current of 1.20A 
rms which correlates well (agrees within 3%) with the network damping resistance of 4,000 ohms 
and the neutral displacement voltage that would occur if the network were resonant earthed of 
4.65kV rms. With an eight ohm NER (ten ohms total earth resistance) this current reduces by only 
0.8%. 

This result confirms that open-delta regulators create significant standing neutral current in solidly 
earthed and NER-earthed networks.  

Effect of  harmonics on fault current  

The effect of network harmonics on earth fault current warrants consideration as harmonics may 
possibly increase the amount of energy released into the local environment at the fault location. 

Simulation of network harmonics 

The model shown in Figure 17 was modified to include sources of harmonics as shown in Figure 23. 

Figure 23: model with harmonic distortion in network voltages 

 
The amplitudes of the harmonic sources were set up as shown in Table 13. 
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Table 13: harmonic source settings 

Harmonic Amplitude (Vpk) 

Third 539 

Fifth 323 

Seventh 231 

Ninth 180 

Eleventh 147 

Thirteenth 124 

This harmonic profile is a classic ‘one over N’ in which the amplitude of each harmonic is inversely 
proportional to the harmonic number. The series starts with a third harmonic of amplitude equal to 
3% of the fundamental amplitude. Total harmonic distortion in the phase voltages is 0.08%. 

The phase of each harmonic was arbitrarily set to zero on Phase A, 120 degrees on Phase B and 240 
degrees on Phase C. As the system contains no non-linear elements, the phase should be immaterial 
in the analysis, though variations in phase may dramatically change the visual appearance of the 
waveforms.  

Confirmation of harmonic levels 

A 200ms simulation of the un-faulted network was done with a time step of 5µs. The resulting three 
phase voltage waveforms are visibly distorted as can be seen in Figure 24.  

Figure 24: network voltages with harmonic distortion 

 The spectra of the source phase and phase-to-phase voltages were calculated using a Fast Fourier 
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Transform algorithm. They were confirmed to be within one volt of the values set in the simulation 
model and listed in Table 13. Two examples are shown in Figure 25.  

Figure 25: spectra of phase-to-neutral and phase-to-phase voltages 

  
Phase A to neutral voltage spectrum Phase A to Phase B voltage spectrum 

 Simulation of a high impedance earth fault on a network with harmonics 

A remote (65km from the substation) 3,200 ohm earth fault was simulated for 500ms with a 5us 
time step. The resulting waveforms are shown in Figure 29 on the next two pages. The fault current 
and the phase-to-earth voltage at the fault location are rich in harmonics, while waveforms closer to 
the source substation are less so. The neutral voltage and coil current both have quite low harmonic 
levels as would be expected in a system with a strong resonance at 50Hz. 

The fault current is 1.184 amps and the neutral displacement voltage is 9.057 kV. The waveforms 
and spectra for these two key quantities are shown here: 

Figure 26: fault current waveform and spectrum – 3200 ohm remote earth fault  
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Figure 27: Neutral voltage waveform and spectrum – 3200 ohm remote earth fault  

  

These simulation results show the following features: 

• The ‘one on N’ source harmonics profile is only partially reflected in the network response.  
• The 11th harmonic is greatly increased in amplitude relative to other harmonics. 
• The level of harmonics in the neutral voltage is much lower than in the source phase 

voltages (maximum of 0.11% of the 50Hz value). 
• The level of harmonics in the fault current is much higher than in the source phase voltages 

(from 11.3% to 20.1% of the 50Hz value). This is due to the suppression of the fundamental 
by the 50Hz ASC resonance. 

The anomalous increase in the 11th harmonic is due to a 632Hz resonance in the network model, as 
shown in the network frequency response in Figure 28.  

Figure 28: frequency response of network (for signal injection at fault location) 
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Figure 29: waveforms for a remote 3200 ohm fault in the presence of network voltage harmonics  

 

 

Fault current 

Phase voltage at fault location 
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Phase voltage at source substation 

Neutral voltage 
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An identical simulation was performed with no harmonic sources. The fault current and neutral 
voltage with and without harmonics are shown in Table 14.  

Table 14: Effect of harmonics on neutral voltage and fault current - remote 3200 ohm earth fault 

Simulation Neutral voltage Fault current 

With harmonics 9.057kV 1.184A 

Without harmonics 9.060kV 1.141A 

Difference 0.03% 3.8% 

Because the neutral voltage is created by the 50Hz resonance of the ASC coil with the network, it is 
not surprising that harmonics have little effect. On the other hand, the harmonic currents generated 
by the fault are significant as the ASC does nothing to compensate for frequencies other than 50Hz. 

Effect of harmonics on a low impedance fault 

The simulation with the same harmonic profile was performed for a 250 ohm fault in the same 
location (65km from the substation). A simulation using identical parameters with no harmonics 
present provided a reference case. 

Table 15: Effect of harmonics on neutral voltage and fault current - remote 250 ohm earth fault 

Simulation Neutral voltage Fault current 

With harmonics 12.28kV 2.407A 

Without harmonics 12.28kV 1.536A 

Difference 0.0% 57% 

For this low impedance fault: 

• Harmonics have no effect on neutral displacement voltage (or the ASC coil current) 
• Harmonics cause a substantial  increase in fault current 
• There is a 15% difference between the voltage on the faulted phase at the fault location 

(601.6 volts) and at the source substation (707.1 volts) 

The waveforms produced by the simulation are shown in Figure 30.
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Figure 30: low impedance fault with network harmonics – network waveforms 
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Neutral voltage 
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The fault current waveform and spectrum are shown in Figure 31. 

Figure 31: low impedance fault current with harmonics – remote 250 ohm earth fault 

  

The ‘one on N’ harmonic profile can be seen reflected in the fault current. The 50Hz current has 
been suppressed by the resonant earthing and the 11th harmonic current is still increased by the 
network resonance near 632Hz, but the primary reason for the increase in fault current is the 
decrease in fault impedance. This has increased the amplitude of all harmonic currents flowing into 
the fault.  

For example, the third harmonic component of fault current (2.052Apk) is within 5% of the value of 
the third harmonic source voltage (539 vpk) divided by a resistance equal to the fault resistance 
(250Ω) plus the series resistance of the faulted phase between the fault and the source substation 
(24.5Ω). 

Effect of harmonics on a very low impedance fault 

The simulation was repeated with a ten ohm fault resistance at the same location. Given the 3.25 
ohm resistance of a 65km earth return path and the typical zone substation earth grid resistance of 
two ohms, this is approaching the lowest possible earth fault impedance likely to occur in practice. 

The neutral displacement in the simulation is 99.4% or 12.64kVrms. The fault current is 5.760Arms, 
most of it harmonic currents. The waveforms are shown in Figure 32 on the next page. 

It can be seen that the fault current settles to a steady state harmonic-rich waveform. There is an 
initial transient comprising a few cycles of a decaying oscillatory current with a frequency of about 
120Hz and decay time constant of the order of 10-15ms.  

In the first 50Hz cycle after the fault, the neutral voltage peaks at 25.2kV leading to the Phase B 
voltage reaching 38.8kV. This over-voltage is not due to fast travelling wave effects but to the 
various resonances in the network model and a significant (decaying) DC component in the initial 
transient.  
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Figure 32: very low impedance remote fault with harmonics 

Neutral voltage 

Fault current 
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Phase voltages at source substation 

Phase voltage at fault location 
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The waveform and spectrum of the residual fault current are shown in Figure 33. 

Figure 33: fault current in a very low impedance fault with harmonics – 10 ohm remote earth fault 

  

The third harmonic dominates the fault current. The 50Hz component of fault current (1.578Arms) 
implies a value for Rn of 8,051 ohms which is similar to the values derived in Table 9. While the 
fundamental component of fault current has remained at the same level, all harmonic components 
of the fault current have increased as the fault resistance has reduced. The overall effect is a 260% 
increase in fault current from 1.6 amps to 5.76 amps.  

Overall conclusion – effect of harmonics 

The simulation results with and without harmonics are summarised in Table 16. 

Table 16: Effect of network harmonics on earth faults 65 km from substation 

Fault 
resistance 

(ohms) 

Fault 
current 
(amps) 

Neutral 
voltage 

(kilovolts) 

50Hz 
current 
(amps) 

150Hz 
current 
(amps) 

250Hz 
current 
(amps) 

350Hz 
current 
(amps) 

450Hz 
current 
(amps) 

550Hz 
current 
(amps) 

650Hz 
current 
(amps) 

3200 1.141 9.060 1.141 - - - - - - 

3200 1.184 9.057 1.140 0.128 0.090 0.085 0.107 0.229 0.060 

250 1.536 12.28 1.536 - - - - - - 

250 2.407 12.28 1.535 1.451 0.803 0.533 0.418 0.471 0.097 

10 1.581 12.64 1.581 - - - - - - 

10 5.760 12.64 1.578 5.314 1.257 0.647 0.457 0.497 0.102 

The investigation into the effects of harmonics leads to the following conclusions (for an accurately 
tuned, balanced network with total harmonic distortion of 0.08% in network voltages and effects 
measured on an earth fault located 65 km from the substation): 

1. Network harmonics make little difference to the energy in high impedance faults. Harmonics 
produce only a 3.8% increase in the current that flows in a 3,200 ohm earth fault. 

2. The effect of network harmonics on low impedance faults is moderate. Harmonics can 
increase the current that flows in a 250 ohm earth fault by 57% from 1.5 amps to 2.4 amps. 
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3. Network harmonics have potentially major effects on very low impedance faults. Harmonics 
dominate the current that flows in a 10 ohm earth fault, increasing it by 260% from 1.6 amps 
to 5.75 amps. 

4. Resonances in networks can lead to disproportion prominence of some higher order 
harmonics in earth fault currents. 

5. Harmonics have little or no effect on neutral displacement voltage or ASC coil current as 
these are determined primarily by the 50Hz resonance between the coil and total network 
capacitance.  

6. Each harmonic can be separately calculated and the results added together – this is evident 
from Table 16 which show the 50Hz component of the fault current in each case is identical 
with the 50Hz current in the simulation with no harmonics. 


