Section 2:
Estimating Energy Savings and Incentives

2.1 Estimating Energy Savings and Incentives ... 2
2.2 Customized Measures - Estimation Software ... 2
 2.2.1 AC&R – Chiller Replacement or Early Retirement ... 3
 2.2.2 AC&R - Split/Packaged AC Retrofit or Early Retirement (PG&E and SDG&E Only) ... 5
 2.2.3 AC&R –Split/Packaged Heat Pump or Early Retirement (PG&E and SDG&E Only) ... 8
 2.2.4 AC&R – VAV or VSD on Supply Fan Motors ... 11
 2.2.5 Gas - Natural Gas Boiler Measures (PG&E and SDG&E Only) 13
 2.2.6 Gas - Thermal Oxidizer Upgrades (PG&E and SDG&E Only) 13
 2.2.7 Gas – Steam Trap Replacement (PG&E and SDG&E Only) 22
 2.2.8 Lighting - Lighting Retrofit .. 26
 2.2.9 Lighting - Lighting Controls ... 28
 2.2.10 Other - A/C Economizers .. 30
 2.2.11 Other - Carbon Monoxide Sensors for Parking Garages 32
 2.2.12 Other - Cold Storage Rapid Close Doors .. 33
 2.2.13 Other - Compressed Air System Upgrades ... 35
 2.2.14 Other - Demand Control Ventilation (DCV) ... 38
 2.2.15 Other - Injection Molding Machines .. 40
 2.2.16 Other – Low Solar Heat Gain Coefficient Windows ... 42
 2.2.17 Other - Motors Replacement or Early Retirement for Motors 44
 2.2.18 Other - Professional Wet Cleaning Replacement .. 45
 2.2.19 Other - Pulse Cooling for Injection Molding Machines 46
 2.2.20 Other - Pump-Off Controllers for Oil Wells ... 48
 2.2.21 Other – Pumping System Upgrades ... 49
 2.2.22 Other - Refrigerated Wine Tank Insulation ... 61
 2.2.23 Other - Tape Drip Irrigation ... 63
 2.2.24 Other - Variable-Speed Drives for Cooling Tower Fan Motors 65
 2.2.25 Other - Variable-Speed Drives for Dairy Vacuum Pump 67
 2.2.26 Other - Variable-Speed Drives for HVAC Fans > 100 HP 68
 2.2.26 Other - Variable-Speed Drives for Process Applications 69
 2.2.27 Other - Wastewater Retrocommissioning ... 70
 2.3 Customized Measures - Engineering Calculations ... 72
 2.4 Measurement & Verification (M&V) Process .. 75
2.1 Estimating Energy Savings and Incentives

This section of the 2010 Statewide Customized Offering Procedures Manual describes the customized approach utilized to estimate the expected energy savings and incentives for your proposed Customized energy efficiency project(s).

Under this approach you will need to estimate the kWh savings and the permanent peak demand reduction achieved as a result of your high efficiency upgrade. This can be done using either the estimation software or using engineering calculations.

- **Estimating software.** Downloaded from the Utility website or on-line (SCE Only), the estimating software provides methodologies for specific measures that calculate energy savings based on site-specific information for the project (a list of the measures included on the software is included in Section 2.3). This method is also used to determine the energy savings for air conditioning equipment and motors that qualify for the Early Retirement option.

- **Engineering calculations.** If your proposed energy efficiency measures are not addressed by the estimation software, you can calculate the energy savings by using accepted engineering procedures. This option should ONLY be used if the estimating software does not address the specific measure you are installing or if the software does not accurately calculate your achievable savings. This is the more difficult approach for estimating the savings but is acceptable with supporting documentation and substantiation of your savings claims.

2.2 Customized Measures - Estimation

Software

The Statewide Customized Offering Estimation Software provides savings calculations for a variety of the most common energy-saving measures. These savings calculations incorporate assumptions and stipulations that provide reasonable savings estimates under most conditions.

The estimation software asks for detailed input from your facility, providing a good approximation of the energy savings. In some cases spot measurements may be necessary.

Each of these tools collects project information through a combination of direct data entry and pull-down menus. The input fields are generally self-explanatory, and if you position your cursor at the very beginning (left edge) of the white input field, a “balloon” prompt will pop up to explain the type of data that should be entered into that field.

The estimating tools can be accessed either by using “Create or Edit Application” feature or by using the “Energy Savings Calculator” feature of the software (The calculator only provides a savings estimation and does not go through the steps of filling out an electronic application). This allows you to fill out the Application forms by hand, and attach the savings calculation.

Specific considerations for each of these tools are discussed below.
2.2.1 AC&R – Chiller Replacement or Early Retirement

This tool is for the direct replacement of water-cooled chillers (SCE) and for direct replacement of air-cooled and water-cooled Chillers (PG&E and SDG&E). The tool also can be utilized for the installation of a VSD on an existing Chiller. Baseline efficiency is current Title 24 standards or minimum efficiency standards.

Calculating Early Retirement

This tool is used for chillers that qualify for Early Retirement. If the unit qualifies for early retirement, (either recently overhauled or replaced before the end of its useful life) the energy savings are calculated using the baseline standards that were in effect when the equipment was manufactured rather than the current minimum standards. This results in a larger incentive than would be possible using the traditional Customized Approach.

To qualify as overhauled, a significant amount of work must have been performed (major overhaul). All of the components must be brought back to their original condition. The life of the existing equipment must have been significantly extended from this effort. For example, a major overhaul would include the replacement or rebuilding of all of the compressors and motors of the chiller unit as well as restoring the evaporator and condenser heat exchangers to their original condition. As part of the inspection, the equipment will be examined to determine if the calculated remaining life is reasonable. Should the equipment not meet the expected useful life, the measure will be rejected. The Utility administer has the final decision on whether a piece of equipment qualifies as refurbished. To establish the overhaul and its date, supporting invoices are required.

The 2010 Customized Offering estimating software calculates savings using the Engage tool for a measure of this type. The Engage software is a stand-alone, DOE2 based modeling program. If you believe the simulation does not fairly represent the project’s savings, use the engineering calculations approach to estimate the energy savings.

Please note the following inputs into the Engage Model:

- **Building Location** - From the pull-down menu, select a city that best represents the building location; this will, in turn, automatically select a weather zone or select the weather zone directly from the pull down menu.

- **Building Type** - Select a “predefined” building configuration from the list of “prototypical” buildings (see Appendix D for detailed descriptions). If one of the predefined building types is a fair representation of your project site, you can simply input the building location, square footage of conditioned space, and building operating hours.

- **Vintage** – Select the vintage of the building.

- **HVAC System Type** – Select a “predefined” HVAC system type from the drop down list. Choices change depending on building type selected.

- **Building Area** – Enter the total building area. There may be auxiliary or secondary area inputs required, depending on the building type selected.

- **Building Seasons** - Sheet 2 and Sheet 3 are used to input the operating schedule of the building.
 - **Sheet 2** – The user has the ability to define up to three seasons
 - **Sheet 3** – The user may select the appropriate building shell and define the hourly schedule of each season.

The following inputs relate to the measure specifications located on Screen 4
- **Area Served** – This is the total building area within the project that is served by the selected type of HVAC equipment.

- **Year Manufactured** – Indicate the year during which the existing chiller(s) were manufactured.

- **Overhaul Flag for Existing Chillers** - Use this checkbox to indicate whether the existing equipment has been overhauled. The useful life for overhauled chillers is assumed to be 15 years (reciprocating chillers) or 17 years (other chiller types)

- **Year of Overhaul for Existing Chillers** - Indicate the year during which the existing chiller(s) were overhauled.

- **Chiller Type** – Select the appropriate chiller type from the drop down list.

- **Condenser Types** – Chiller Condenser Type is used to indicate whether the chillers use air-cooled or water-cooled condensers. There are five choices:
 - "Water-Cooled" A water-cooled chiller will be used.
 - "Packaged Air-Cooled" A self-contained air-cooled condenser will be used. All energy consumption associated with the condenser fans is included in the chiller’s rated efficiency.
 - “Remote Air-Cooled” A remotely located, air-cooled condenser will be used. The chiller’s rated efficiency does not include the energy used by the condensing unit.
 - “Remote Evap-Cooled” A remotely located, evaporative-cooled condenser will be used. The chiller’s rated efficiency does not include the energy used by the condensing unit.

- **Compressors** – Select between constant, variable speed, and frictionless compressors. Please note that this option is only enabled for centrifugal chillers.

- **Chiller Counts and Sizes** – Input the quantity and the typical chiller size (in tons) for the baseline and proposed equipment. Chiller Size is available for input only if the user has selected "Specify" for the Specify Chiller Size.

- **Chiller Efficiency** - Indicate the preferred chiller efficiency units (kW/ton or COP) and input the chiller efficiency for the baseline and proposed equipment.

For cooling and heating units not covered by this estimating tool, you will have to use the Engineering Calculations approach to determine the energy savings.
2.2.2 AC&R - Split/Packaged AC Retrofit or Early Retirement (PG&E and SDG&E Only)

This tool is for split or packaged air-cooled air conditioners greater than or equal to 760,000 BTU/hr (63.3 tons). Baseline efficiency is current Title 24 standards or minimum efficiency standards. A package unit is defined as an electric cooling unit with its compressor, condenser, and supply fan in a single enclosure.

For SCE, Packaged, Split-System, Heat Pumps, and Air-Cooled Chillers are not eligible under the Customized Offering but may be available through other Offerings; please check www.sce.com for more information.

Calculating Early Retirement

This tool can also be used for packaged AC Units that qualify for Early Retirement. If the unit qualifies for early retirement, (either recently overhauled or replaced before the end of its useful life) the energy savings are calculated using the baseline standards that were in effect when the equipment was manufactured rather than the current minimum standards. This results in a larger incentive than would be possible using the traditional Customized Approach.

To qualify as overhauled, a significant amount of work must have been performed (major overhaul). All of the components must be brought back to their original condition. The life of the existing equipment must have been significantly extended from this effort. For example, a major overhaul would include the replacement or rebuilding of all of the compressors and motors of the AC unit as well as restoring the evaporator and condenser heat exchangers to their original condition. As part of the inspection, the equipment will be examined to determine if the calculated remaining life is reasonable. Should the equipment not meet the expected useful life, the measure will be rejected. The Utility administer has the final decision on whether a piece of equipment qualifies as refurbished. To establish the overhaul and its date, supporting invoices are required.

The 2010 Customized Offering estimating software calculates savings using the Engage tool for a measure of this type. The Engage software is a stand-alone, DOE2 based modeling program. If you believe the simulation does not fairly represent the project's savings, use the engineering calculations approach to estimate the energy savings.

Please note the following inputs into the Engage Model:

- **Building Location** - From the pull-down menu, select a city that best represents the building location; this will, in turn, automatically select a weather zone or select the weather zone directly from the pull down menu.

- **Building Type** - Select a “predefined” building configuration from the list of “prototypical” buildings (see Appendix D for detailed descriptions). If one of the predefined building types is a fair representation of your project site, you can simply input the building location, square footage of conditioned space, and building operating hours.

- **Vintage** – Select the vintage of the building.

- **HVAC System Type** – Select a “predefined” HVAC system type from the drop down list. Choices change depending on building type selected.

- **Building Area** – Enter the total building area. There may be auxiliary or secondary area inputs required, depending on the building type selected.

- **Building Seasons** - Sheet 2 and Sheet 3 are used to input the operating schedule of the building.
 - **Sheet 2** – The user has the ability to define up to three seasons
Sheet 3 – The user may select the appropriate building shell and define the hourly schedule of each season.

The following inputs relate to the measure specifications located on Screen 4

- **Area Served** – This is the total building area within the project that is served by the selected type of HVAC equipment.
- **Economizer** – This is used to indicate whether the AC units described on this screen are required to have economizers by the latest vintage of Title24.
- **Equipment Data Button** – Select the appropriate button to view or edit the details for existing or replacement AC systems.

Existing AC Systems:

- **Year Manufactured** – Indicate the year during which the existing AC unit(s) was manufactured.
- **Overhaul Flag for Existing Equipment** - Use this checkbox to indicate whether the existing equipment has been overhauled.
- **Year of Overhaul for Existing Equipment** - Indicate the year during which the existing unit(s) was overhauled.
- **Cooling Capacity Per Unit** - Indicate the rated or nominal capacity of each individual unit defined as the total (sensible + latent) cooling capacity in tons, per individual unit.
- **Number of Units** - Input the quantity of units of the same size and efficiency. Select a new row (up to 15) for each unitary unit type, size or efficiency.
- **Unit Type** – Select type and size range of replacement packaged AC unit (choices vary based on cooling capacity). Indicate the type of replacement unit, package or split, single-phase or three-phase. This input is used to identify the Title 24 size range for the AC units described on this screen.
- **Cool Efficiency** - Indicate the preferred AC unit efficiency in units of EER (Energy Efficiency Ratio).
- **Static Pressure** – Indicate the total (internal + external) static pressure for the supply and return fans for the existing AC unit(s) described on this screen. Static pressure is a commonly used indicator of fan power. It is the amount of air pressure generated (or overcome) by the system fan, commonly measured in inches of water gauge.
- **Supply Flow** – Indicate the supply fan flow rate, per ton of cooling capacity, per individual AC unit(s) described on this screen.

Replacement AC Systems

- **Cooling Capacity Per Unit** - Indicate the rated or nominal capacity of each individual unit. This is defined as the total (sensible + latent) cooling capacity in tons, per individual unit.
- **Number of Units** - Input the quantity of units of the same size and efficiency. Please note that up to fifteen (15) systems may be specified for the replacement scenarios. The number of replacement systems does NOT need to match the number of existing systems.
- **Unit Type** – Select the appropriate equipment type from the drop down list.
- **Cool Efficiency** - Indicate the preferred AC unit efficiency in units of EER (Energy Efficiency Ratio).
- **Static Pressure** – Indicate the Total (internal + external) static pressure for the supply and return fans for the replacement AC unit(s) described on this screen. Static pressure is a commonly used indicator of fan power. It is the amount of air pressure generated (or overcome) by the system fan, commonly measured in inches of water gauge.

- **Supply Flow** – Indicate the supply fan flow rate, per ton of cooling capacity, per individual AC unit(s) described on this screen.

For cooling and heating units not covered by this estimating tool, you will have to use the Engineering Calculations approach to determine the energy savings.
2.2.3 AC&R –Split/Packaged Heat Pump or Early Retirement (PG&E and SDG&E Only)

This tool is for split or packaged air-cooled heat pumps greater than or equal to 760,000 BTU/hr (63.3 tons). Baseline efficiency is current Title 24 standards or minimum efficiency standards. A package heat pump is defined as an electric cooling unit with its compressor, condenser, and supply fan in a single container. This tool can only be used for measures replacing an existing heat pump (no fuel switching). Heat pump savings are calculated for the cooling savings only.

For SCE, Packaged, Split-System, Heat Pumps, and Air-Cooled Chillers are not eligible under the Customized Offering but may be available through other Offerings; please check www.sce.com for more information.

Calculating Early Retirement

This tool can also be used for heat pumps that qualify for Early Retirement. If the unit qualifies for early retirement, (either recently overhauled or replaced before the end of its useful life) the energy savings are calculated using the baseline standards that were in effect when the equipment was manufactured rather than the current minimum standards. This results in a larger incentive than would be possible using the traditional Customized Approach.

To qualify as overhauled, a significant amount of work must have been performed (major overhaul). All of the components must be brought back to their original condition. The life of the existing equipment must have been significantly extended from this effort. For example, a major overhaul would include the replacement or rebuilding of all of the compressors and motors of the heat pump unit as well as restoring the evaporator and condenser heat exchangers to their original condition. As part of the inspection, the equipment will be examined to determine if the calculated remaining life is reasonable. Should the equipment not meet the expected useful life, the measure will be rejected. The Utility administrator has the final decision on whether a piece of equipment qualifies as refurbished. To establish the overhaul and its date, supporting invoices are required.

The 2010 Customized Offering estimating software calculates savings using the Engage tool for a measure of this type. The Engage software is a stand-alone, DOE2 based modeling program. If you believe the simulation does not fairly represent the project’s savings, use the engineering calculations approach to estimate the energy savings.

Please note the following inputs into the Engage Model:

- **Building Location** - From the pull-down menu, select a city that best represents the building location; this will, in turn, automatically select a weather zone or select the weather zone directly from the pull down menu.

- **Building Type** - Select a “predefined” building configuration from the list of “prototypical” buildings (see Appendix D for detailed descriptions). If one of the predefined building types is a fair representation of your project site, you can simply input the building location, square footage of conditioned space, and building operating hours.

- **Vintage** – Select the vintage of the building.

- **HVAC System Type** – Select a “predefined” HVAC system type from the drop down list. Choices change depending on building type selected.

- **Building Area** – Enter the total building area. There may be auxiliary or secondary area inputs required, depending on the building type selected.

- **Building Seasons** - Sheet 2 and Sheet 3 are used to input the operating schedule of the building.
Sheet 2 – The user has the ability to define up to three seasons
Sheet 3 – The user may select the appropriate building shell and define the hourly schedule of each season.

The following inputs relate to the measure specifications located on Screen 4

- **Area Served** – This is the total building area within the project that is served by the selected type of heat pump equipment.
- **Economizer** – This is used to indicate whether the heat pump units described on this screen are required to have economizers by the latest vintage of Title 24.
- **Equipment Data Button** – Select the appropriate button to view or edit the details for existing or replacement heat pump units.

Existing HP Units:

- **Year Manufactured** – Indicate the year during which the existing heat pump unit(s) was manufactured.
- **Overhaul Flag for Existing Equipment** - Use this checkbox to indicate whether the existing equipment has been overhauled.
- **Year of Overhaul for Existing Equipment** - Indicate the year during which the existing unit(s) was overhauled.
- **Cooling Capacity Per Unit** - Indicate the rated or nominal capacity of each individual unit defined as the total (sensible + latent) cooling capacity in tons, per individual unit.
- **Number of Units** - Input the quantity of units of the same size and efficiency. Please note that up to fifteen (15) systems may be specified for the existing scenarios. The number of existing systems does NOT need to match the number of replacement systems.
- **Unit Type** – Select the appropriate equipment type from the drop down list (choices vary based on cooling capacity). Indicate the type of replacement unit, package or split, single-phase or three-phase. This input is used to identify the Title 24 size range for the heat pump units described on this screen.
- **Cool Efficiency** - Indicate the preferred heat pump efficiency in units of EER (Energy Efficiency Ratio).
- **Heat Efficiency** – Input the heating efficiency, per individual unit, for the existing air-source heat pump unit(s) described on this screen. This is assumed to be the rated heating efficiency of each individual air-source heat pump in units of COP (Coefficient of Performance, heating work accomplished in Btu/hr divided by electric energy required in Watts).
- **Static Pressure** – Indicate the total (internal + external) static pressure for the supply and return fans for the existing heat pump(s) described on this screen. Static pressure is a commonly used indicator of fan power. It is the amount of air pressure generated (or overcome) by the system fan, commonly measured in inches of water gauge.
- **Supply Flow** – Indicate the supply fan flow rate, per ton of cooling capacity, per individual heat pump described on this screen.

Replacement HP Units
- **Cooling Capacity Per Unit** - Indicate the rated or nominal capacity of each individual heat pump unit. This is defined as the total (sensible + latent) cooling capacity in tons, per individual unit.

- **Number of Units** - Input the quantity of units of the same size and efficiency. Select a new row (up to 15) for each unitary unit type, size or efficiency.

- **Unit Type** – Select the appropriate type and size range of replacement packaged heat pump unit (choices vary based on cooling capacity). Indicate the type of replacement unit. This input is used to identify the Title 24 size range for the heat pump units described on this screen.

- **Cool Efficiency** - Indicate the preferred heat pump unit efficiency in units of EER (Energy Efficiency Ratio).

- **Heat Efficiency** – Input the heating efficiency, per individual unit, for the replacement air-source heat pump unit(s) described on this screen. This is assumed to be the rated heating efficiency of each individual air-source heat pump in units of COP (Coefficient of Performance, heating work accomplished in Btu/hr divided by electric energy required in Watts).

- **Static Pressure** – Indicate the total (internal + external) static pressure for the supply and return fans for the replacement heat pump unit(s) described on this screen. Static pressure is a commonly used indicator of fan power. It is the amount of air pressure generated (or overcome) by the system fan, commonly measured in inches of water gauge.

- **Supply Flow** – Indicate the supply fan flow rate, per ton of cooling capacity, per individual heat pump unit(s) described on this screen.

For cooling and heating units not covered by this estimating tool, you will have to use the Engineering Calculations approach to determine the energy savings.
2.2.4 AC&R – VAV or VSD on Supply Fan Motors

This tool predicts the savings achievable by installing a Variable Speed Drive or other control device on the main air handler supply fan(s) in a building. The Variable Speed Drive on the Supply Air fan(s), along with VAV boxes at the zone level, allows for varying air flow depending on the overall building cooling load.

The 2010 Customized Offering estimating software calculates savings using the Engage tool for a measure of this type. The Engage software is a stand-alone, DOE2 based modeling program. If you believe the simulation does not fairly represent the project’s savings, use the engineering calculations approach to estimate the energy savings.

This tool has four (4) input screens. Please note the following inputs into the Engage Model:

- **Building Location** - From the pull-down menu, select a city that best represents the building location; this will, in turn, automatically select a weather zone or select the weather zone directly from the pull down menu.

- **Building Type** - Select a “predefined” building configuration from the list of “prototypical” buildings (see Appendix D for detailed descriptions). If one of the predefined building types is a fair representation of your project site, you can simply input the building location, square footage of conditioned space, and building operating hours.

- **Vintage** – Select the vintage of the building.

- **HVAC System Type** – Select a “predefined” HVAC system type from the drop down list. Choices change depending on building type selected.

- **Building Area** – Enter the total building area. There may be auxiliary or secondary area inputs required, depending on the building type selected.

- **Building Seasons** - Sheet 2 and Sheet 3 are used to input the operating schedule of the building.
 - **Sheet 2** – The user has the ability to define up to three seasons
 - **Sheet 3** – The user may select the appropriate building shell and define the hourly schedule of each season.

The following inputs relate to the measure specifications located on Screen 4

- **Supply Fan Type and Control (Baseline and Measure)** - Select the appropriate fan and control combination for both the baseline and measure cases:
 - **Forward Curved Centrifugal Fan, Inlet Guide Vane Control** – a “squirrel cage” type fan with forward curved impeller blades and using inlet guide vanes to throttle the amount of air entering the fan.
 - **Forward Curved Centrifugal with Discharge Dampers** — a “squirrel cage” type fan with forward curved impeller blades and using outlet dampers to throttle the amount of air leaving the fan.
 - **Air Foil Centrifugal with Inlet Vanes** — a “squirrel cage” type fan with airfoil impeller blades (i.e., curved backward blades having an airfoil shape, similar in cross section to an airplane wing) and using inlet guide vanes to throttle the amount of air entering the fan
 - **Air Foil Centrifugal with Discharge Dampers** — a “squirrel cage” type fan with airfoil impeller blades (i.e., curved backward blades having an airfoil shape, similar in cross section to an airplane wing) and using outlet dampers to throttle the amount of air leaving the fan
- **Vane-Axial** — a propeller-type fan (similar to residential fans that get plugged into the wall for space cooling) and using guide vanes to throttle the amount of fan’s air flow

- **Variable Speed Drive** — the default for the Measure case; Variable Speed Drives (VSD’s or equivalent, Variable Frequency Drive, VFD’s) are the most efficient means of varying the air flow of an HVAC fan

- **VAV Minimum Flow** - Use these inputs to describe the Minimum Flow entering Perimeter Zones and Core Zones throughout the building for both the baseline and measure cases. The defaults come from Title 24. If a Baseline case is constant volume, VAV Minimum Flow should be 100%, indicating no reduction in flow.

- **Fan Motors** - Enter motor count and motor horsepower for up to twenty (20) different motor sizes.

Savings Estimate - The estimated savings are reported on the fifth screen of this tool.
2.2.5 Gas - Natural Gas Boiler Measures

This tool covers the replacement of space heating, process, and industrial boilers and the addition of an economizer to a process boiler.

Replacing a Space Heating Boiler(s)

This tool is to be used for calculating the energy savings and incentive for replacing space heating steam or hot water boiler(s) with new boiler(s) of higher efficiency. The energy output of the proposed boiler(s) can be larger than the output from the existing boiler(s). The 2009 program does provide incentives for increased capacity.

This 2009 estimating software tool for replacing an existing space heating boiler is based on parametric runs using the hourly simulation program eQUEST and empirical data from the Commercial Buildings Energy Consumption Survey conducted by the Energy Information Administration. A small number of building types, operating hours and sizes were used in developing the results. If you believe this method does not fairly represent the project’s savings, use the Engineering Calculations approach to estimate the energy savings.

- **Boiler Data** – The Project Sponsor shall provide, with the program Application, copies of the manufacturer’s specification sheets that detail the replacement equipment output, input and efficiency and other data pertaining to the boiler’s operation. In some instances the output from a boiler may be rated in “Boiler Horsepower” (BHP). BHP should be converted to Btu/hr by the factor of 33,476 Btu/hr per BHP and inserted in the output box.

- **Boiler Efficiency** – As in all equipment covered by the program, energy savings for boilers are calculated using, as a baseline, the California Energy Commission’s (CEC) minimum efficiencies. When the efficiency for the existing boiler is less than the CEC minimum efficiency, the savings are calculated as the differential between the CEC minimum efficiency and the proposed boiler efficiency. In cases where the efficiency of the existing boiler is greater than the CEC minimum, the savings will be calculated as the differential between the existing and proposed efficiencies.

- **Building Type** – Select the building type that is closest to the project building.

- **Building Construction Year** – Select the appropriate period of building construction.

- **Occupancy Schedule** – Select the “Occupancy Schedule” of Low, Medium, or High that best represents your project’s schedule. The days per week and start and stop times per day of the heating equipment will be shown in the “Occupied Hours” field that represents the “Occupancy Schedule” selected.

- **City** – Select the city where the building is located. The city selected will determine the CEC weather zone.

- **Building Size** – Enter the floor area of the building in ft².

- **Setback** – Specify if the boiler has temperature setback controls. These controls lower the heating set point to 60 degrees during periods when the building is unoccupied. If this is not selected, it is assumed the building temperature will not be regulated (i.e. no heating) during unoccupied periods.

The type of CEC minimum efficiency (AFUE, thermal or combustion) is dependent on the size of the boiler. See Table 2-5 – CEC Minimum Efficiencies for Natural Gas Fired Boilers.
The procedures for retrofits with multiple boilers are as follows:

- **Multiple Boilers Replacing a Single Boiler** - Indicate the number of proposed boilers in the quantity field. Enter the value for one of the multiple boilers in the proposed Input (Btu/hr) and Output (Btu/hr) fields (the energy input value is used to determine the type of efficiency and CEC minimum efficiency). If the proposed boilers are not identical in energy output and efficiency you must use the Engineering Calculations method of energy estimation.

- **Single Boiler Replacing Multiple Boilers** - Indicate the number of proposed boilers in the quantity field. If the existing boilers are not of the same output and efficiency, use the average efficiency, input energy rating, and output energy rating. This information should be entered as a single unit not the sum of all the units.

- **Multiple Boilers Replacing Multiple Boilers** - Indicate the number of proposed and existing boilers in the quantity fields. Enter the value for one of the multiple boilers in the proposed Input (Btu/hr) and Output (Btu/hr) fields (the energy input value is used to determine the type of efficiency and CEC minimum efficiency). If the existing boilers are not of the same output and efficiency, use the average efficiency, input energy rating, and output energy rating. This information should be entered as a single unit, not the sum of all the units.

Table 2-5. CEC Minimum Efficiencies for Natural Gas Fired Boilers

<table>
<thead>
<tr>
<th>Size (Btuh Input)</th>
<th>Steam (min eff.)</th>
<th>Hot Water (min eff.)</th>
</tr>
</thead>
<tbody>
<tr>
<td><300,000</td>
<td>75%a</td>
<td>80%a</td>
</tr>
<tr>
<td>≥ 300,000</td>
<td>80%c</td>
<td>80%c</td>
</tr>
</tbody>
</table>

a = AFUE t = Thermal Efficiency c = Combustion Efficiency

Definitions:

“**AFUE (Annual Fuel Utilization Efficiency)** – AFUE is a measure of the percentage of heat from the combustion of natural gas or oil that is transferred to the space being heated during a year, as determined using the applicable test method in the Appliance Efficiency Regulations of paragraph 112. The AFUE is usually lower than thermal efficiency because it takes into account the effects of equipment cycling or modulation at loads than design. It is calculated using the prescribed annual load profile.” (P400-01-023)

“**Thermal Efficiency** – is defined in the Appliance Efficiency Regulations as a measure of the percentage of heat from the combustion of natural gas which is transferred to the water as measured under test conditions specified”

“**% Thermal Eff = Energy to Medium/total Fuel Input**” (P400-01-023)

Combustion Efficiency – is not defined in the Standards, but is used as the efficiency measurement for large boilers and service water heaters. It is a measure of the percent of

1 For Boilers with <300,000Btuh input see CEC document “Appliance Efficiency Regulations Table E-3 & E-5, P400-02-21. For Boilers with input ≥300,000Btuh <2,500,000 see CEC document “2005 Energy Efficiency Standards for Residential and Non-Residential Buildings” Table 112-F. For Boilers with input ≥2,500,000 see CEC document “2001 Energy Efficiency Standards for Residential and Non-Residential Buildings” Table 1-C6.
energy transfer from the fuel to the heat exchanger (HX). Input and output energy are expressed in the same units so that the result is non-dimensional:

\[\% \text{Combustion Eff} = \frac{\text{Energy to HX}}{\text{Total Fuel Input}} \]

Note: “Combustion Efficiency does not include losses from the boiler jacket. It is strictly a measure of the energy transferred from the products of combustion.” (P400-01-023)

Replace Process/Industrial Boiler(s)

This tool calculates the energy savings and incentive for replacing existing steam or hot water boiler(s) with new boiler(s) of higher efficiency. This method is specific to process/industrial heating loads as opposed to space heating loads. The energy output from the proposed boiler can be larger than the output from the existing boiler. The 2009 program does provide incentives for increased capacity. For space heating loads served by a boiler see Section 2.2.23.1.

- **Boiler Data** – The project sponsor shall provide with the application, a copy of the manufacturer's specification sheets that detail the replacement boiler’s output, input and efficiency and other data pertaining to the boiler’s operation. In some instances the boiler’s output maybe rated in “Boiler Horsepower” (BHP). BHP should be converted to Btu/hr by the factor of 33,476 Btu/hr per BHP and inserted in the output field.

- **Average Annual Load** – Typically boilers do not operate at full load over their entire operating schedule. The project sponsor shall estimate the “Average Annual Load” on the boiler(s) as a percent of boiler(s) full load. The project sponsor will provide along with the application, data (e.g. steam flow data, gas meter data, etc.) backing up the estimate made for the “Average Annual Load”. This supplied data will facilitate the review of the application.

- **Boiler(s) Operating Hours** – This value may or may not be equal to the operating hours of the facility. The project sponsor shall provide for Utility Administrator review, data that supports the estimate of the operating hours used in the calculations.

- **Boiler Efficiency** – Industrial/process boilers are not covered under Title 20 or Title 24. The minimum baseline efficiency for industrial/process boilers is the industry standard for packaged industrial/process boilers. This is estimated to be 78% thermal efficiency. Additionally, very large industrial/process boilers (10 MMBtu and larger) are often custom built and therefore the industry standard efficiency of packaged boilers is not applicable to these very large custom boilers. To accommodate this, a “Custom Boiler” box has been added to the Customized process boiler calculator. When this box is checked, the calculator allows the user to input a baseline thermal efficiency lower than 78%. Please note that the Project Sponsor must provide documentation to verify baseline thermal efficiencies lower than 78%.

The procedures for retrofits with multiple boilers are as follows:

- **Multiple Boilers Replacing a Single Boiler** - Indicate the number of proposed boilers in the quantity field. Enter the value for one of the multiple boilers in the proposed boiler Input (Btu/hr) and Output (Btu/hr) sections. “Average Annual Load” and “Operating Hours” for multiple boilers should be calculated as the average of all boilers. If the proposed boilers are not identical in output energy and efficiency, separate software runs will have to be performed.

- **Single Boiler Replacing Multiple Boilers** - Indicate the number of existing boilers in the quantity field. Enter the value for a single boiler in the existing boiler Input (Btu/hr) and Output (Btu/hr) sections. If the existing boilers are not identical in output energy and efficiency, separate software runs will have to be performed.
Multiple Boilers Replacing Multiple Boilers - Indicate the number of proposed and existing boilers in the quantity fields. Enter the value for one of the multiple boilers in the proposed Input (Btu/hr) and Output (Btu/hr) fields (the energy input value is used to determine the type of efficiency and CEC minimum efficiency). If the existing boilers are not of the same output and efficiency, use the average efficiency, input energy rating, and output energy rating. This information should be entered as a single unit not the sum of all the units.

Add an Economizer to a Process Boiler

This tool is to be used for calculating the energy savings by adding an economizer to an existing boiler that provides heating to a non-space heating load. An economizer recovers heat from the flue gas and transfers it to the boiler feedwater.

- **Boiler Data** – In some instances the output from a boiler may be rated in “Boiler Horsepower” (BHP). BHP should be converted to Btu/hr by the factor of 33,476 Btu/hr per BHP and inserted in the output box.

- **Economizer Data** – The Project Sponsor will provide the flue gas temperature “entering” and “leaving” the economizer. Data supporting the “entering” flue gas temperature shall be supplied (measured or other means) with the Project Application. The Project Sponsor shall supply manufacturer’s data documenting the operating conditions of the economizer for this specific boiler. Manufacturer’s data for the economizer shall include: 1) Entering and leaving flue gas temperatures, 2) Entering and leaving water temperature, 3) Water (gal/min) and gas (#/hr) flows, 4) Energy transferred from flue gas to water (Btu/hr). This data will be entered in the Estimation Software.

- **Average Annual Load** – It is recognized that boilers do not operate at full load for all of their operating hours. The Project Sponsor will estimate the Average Annual Load on the boiler as a percent of boiler full load. The Project Sponsor will provide with the calculation software sheets submitted with the Application, data (e.g. steam flow data, gas meter data, etc.) backing up the estimate made for the Average Annual Load. This supplied data will facilitate the review of the application.

- **Boiler(s) Operating Hours** – This value may or may not be equal to the operating hours of the facility. The Project Sponsor shall provide data that supports the estimate of the operating hours used in the calculations for Utility Administrator review.
2.2.6 Gas - Thermal Oxidizer Upgrades (PG&E and SDG&E Only)

One method used to destroy the volatile organic compounds (VOC) in a contaminated airstreams is to oxidize, (burn) the solvents with high temperature, combustion-based systems. Thermal oxidizers work by converting hydrocarbons into carbon dioxide and water. There are five main types of combustion based VOC emission control devices: Thermal Oxidizers (with no heat recovery), Catalytic Oxidizers, Recuperative Thermal Oxidizers, Regenerative Thermal Oxidizers (RTO), and Regenerative Catalytic Oxidizers (RCO).

This tool covers retrofits involving the replacement of an existing thermal oxidizer with a more efficient oxidizer. It also covers measures involving the addition of a heat exchanger for heat recovery purposes (recuperative) on an existing thermal oxidation system. The tool is intended for oxidization systems that are used to destroy low concentration VOC waste streams (less than 25% Lower Flammable Limit). Examples of processes that create these contaminated airstreams are as follows:

- Coating Operations
- Paint Booths
- Textile Finishing
- Packaging
- Pulp and Paper
- Drying
- Certain Chemical Processes
- Computer Chip Manufacturing (Semiconductors)
- Printing Lines
- Textile Converters
- Solvent Cleaning
- Food Processing and Baking
- Ventilation Odors
- Rendering Plants
- Sewage Treatment Plants
- Ventilation Odors
- Rendering Plants
- Sewage Treatment Plants
- Computer Chip Manufacturing (Semiconductors)

Significant Energy savings can be achieved by replacing an existing thermal oxidizer, catalytic oxidizer, or recuperative oxidizer with a regenerative thermal oxidizer. For processes with the appropriate waste gas stream a regenerative thermal oxidizer retrofit can save significant electric (reduced combustion fan usage) and natural gas (reduced supplemental fuel requirements) usage. The amount of savings is highly dependent on the characteristics of process, existing equipment type, and proposed equipment type.

This tool does not cover oxidizers that are used to destroy contaminated inert gas streams, rich gas streams, or contaminated air streams with an LFL (previously LEL - lower explosive limit) greater than 25%.

2.2.6.1 Data Inputs Waste Gas Stream and Site Information

The following lists describe the input information necessary to estimate the energy savings and incentives. Because of the nature of the air quality requirements associated with Thermal Oxidizers much of this information is readily available from the permitting processes.

Waste Gas Stream Information

- **Average VOC Concentration (LFL)** – Enter the Average VOC Concentration as expressed in terms of lower flammable limit (LFL) of the VOCs in the waste gas. The LFL (previously referred to as LEL - lower explosive limit) of an organic compound is its minimum concentration in air that will sustain combustion. The Average VOC Concentration is the actual volumetric concentration value divided by the theoretical volume concentration of the combined gases. This input is required if Average VOC Loading and Average VOC Heat of Combustion are not available.
• **Average VOC Loading (lb/hr)** – Enter the Average VOC Loading as the mass (weight) of the waste gas produced per hour. Typically this information can be obtained from the Air Quality permit emission information. This input is required if Average VOC Concentration is not available.

• **Average VOC Heat of Combustion (Btu/hr)** – Enter the average VOC heat of combustion as the heat content of the VOCs in the waste gas. Typically, this information can be obtained from the Air Quality permit emission information. This input is required if Average VOC Concentration is not available.

• **Average Volumetric Flow Rate (SCFM)** – Enter the average volumetric flow rate of the waste gas at standard conditions.

• **Average Entering Temperature (°F)** – Enter the average temperature of the waste gas during VOC destruction. This value should not average the ambient temperature when the oxidizer is operating at idle (unit at operating temperature but no oxidation occurring).

• **Destruction Efficiency (%)** – Enter the required VOC Destruction Efficiency (some times referred to as Destruction Removal Efficiency - DRE) in terms of a percentage. This value is mandated by the governing air quality district.

Site Information

• **City** - From the pull-down menu, select a city that best represents the site location. Site elevation is determined from ASHRAE weather data. Average ambient temperature is calculated based on the 16 weather zones from California Energy Commission’s CTZ weather data.

• **Annual Operating Hours (VOC Destruction)** – Enter the total number of hours in the year that the oxidizer operates during VOC Destruction.

• **Annual Operating Hours (Idle)** – Enter the total number of hours in the year that the oxidizer operates at full temperature but with no waste gas flowing through the system.

• **Measure Type** – Select either Oxidizer Replacement or Auxiliary Heat Exchanger Installation.

2.2.6.2 Data Inputs for Oxidizer Retrofit

Existing/Proposed Oxidizer Characteristics

• **Manufacturer** – Enter the manufacturer of the Oxidizer.

• **Model Number** – Enter the model number of the Oxidizer.

• **Serial Number** – Enter the Serial number of the Oxidizer.

• **Oxidizer Type** – From the pull-down menu, select the appropriate Oxidizer Type: Thermal Oxidizer (no heat recovery); Recuperative Catalytic Oxidizer (no heat recovery); Recuperative Thermal Oxidizer; Regenerative Thermal Oxidizer (RTO); Regenerative Catalytic Oxidizer (RCO).

• **Thermal Efficiency (%)** – For Oxidizers with heat recovery, enter a thermal efficiency of the integral heat exchanger in terms of a percentage. For Thermal Oxidizer (no heat recovery) this field will not be available.

• **Combustion Chamber Air Temp (°F)** – Enter the set point temperature that the oxidizer maintains in the combustion chamber during operation. This value is mandated by the governing air quality district.
Existing/Proposed Oxidation (System) Fan

- **Oxidation Airflow Resistance (Flange to Flange Pressure Drop – Inches W.C.)** – Enter the total pressure drop across the oxidation side of the oxidizer in inches of H₂O.

- **Oxidation (System) Fan Motor HP** – Enter the rated horsepower of the fan motor on the oxidation side of the oxidizer. Typically this information can be found on the motor nameplate.

- **Oxidation (System) Fan Motor Efficiency (%)** – This entry is automatically entered based on the selected Letter Code (see below) unless N/A is chosen. If N/A is chosen then enter the rated efficiency of the fan motor on the oxidation side of the oxidizer.

- **Letter Code** – The fan motor efficiency as expressed by letter code. Typically, this information can be found on the motor nameplate.

Existing/Proposed Combustion Blower

- **Combustion Blower Average Air Flow Rate (SCFM)** – Enter the average volumetric flow rate of the combustion air at standard conditions.

- **Combustion Blower Motor HP** – Enter the rated horsepower of the fan motor on the combustion side of the oxidizer. Typically, this information can be found on the motor nameplate.

- **Combustion Blower Motor Efficiency (%)** – This entry is automatically entered based on the selected Letter Code (see below) unless N/A is chosen. If N/A is chosen then enter the rated efficiency of the fan motor on the oxidation side of the oxidizer.

- **Letter Code** – The fan motor efficiency as expressed by letter code. Typically, this information can be found on the motor nameplate.

- **Combustion blower fan operates during idle** – Check this box if the combustion fan runs during Oxidizer idle operation.

- **Combustion blower fan operates during VOC destruction** – Check this box if the combustion fan runs during Oxidizer VOC destruction operation.

- **Combustion blower fan draws outside air** – Check this box if the combustion fan draws fresh outside air. Leave this box unchecked if the combustion fan draws air/fuel mixture directly from the VOC laden waste stream.

2.2.6.3 Data Inputs for Heat Exchanger Installation

Existing Oxidizer Characteristics

- **Manufacturer** – Enter the manufacturer of the Oxidizer.

- **Model Number** – Enter the model number of the Oxidizer.

- **Serial Number** – Enter the Serial number of the Oxidizer.

- **Average Combustion Chamber Temperature (°F)** – Enter the set point temperature that the oxidizer maintains in the combustion chamber during operation. This value is mandated by the governing air quality district.

- **Exhaust Gas Temperature During VOC Destruction (°F)** – Enter the Average exhaust gas temperature during operation.

- **Oxidation (System) Fan Motor Efficiency (%)** – This entry is automatically entered based on the selected Letter Code (see below) unless N/A is chosen. If N/A is chosen then enter the rated efficiency of the fan motor on the oxidation side of the oxidizer.
Letter Code – The fan motor efficiency as expressed by letter code. Typically, this information can be found on the motor nameplate.

Oxidation Airflow Resistance (Flange to Flange Pressure Drop – Inches W.C.) – Enter the total pressure drop across the oxidation side of the oxidizer in inches of H₂O.

Proposed Heat Exchanger

Manufacturer – Enter the manufacturer of the heat exchanger.

Model Number – Enter the model number of the heat exchanger.

Effectiveness (%) – Enter the rated effectiveness of the proposed heat exchanger. Typically, this information is found in manufacturer’s specifications.

Heat Exchanger Pressure Drop (Inches W.C.) – Enter the rated pressure drop in inches w.c. Typically, this information is found in manufacturer’s specifications.

2.2.6.4 Basis for Energy Savings

The energy saving estimating tool for thermal oxidizer retrofits uses simplified calculation procedures that are based on industry standards. These procedures capitalize on the fact that the waste gas stream consists primarily of air. An average density and mean heat capacity of the waste gas stream are determined based on this information. Thermodynamic equations are utilized to calculate the heat required to raise the waste gas to combustion temperature, the heat released from the VOCs, the radiated heat losses, and ultimately the additional heat required from natural gas. The general heat equations are as follows:

\[Q_{\text{FUEL}} = Q_{\text{WASTEGAS}} + Q_{\text{RADLOSS}} - Q_{\text{VOC}} \]

Where:

- \(Q_{\text{WASTEGAS}} = \text{Flow scfm} \times 60 \text{ min/hr} \times \text{Density lb/scf} \times \text{Heat Capacity BTU/lb} \times \Delta\text{°F} \)
- \(Q_{\text{RADLOSS}} = Q_{\text{WASTEGAS}} \times \% \text{ Heat Loss (based on oxidizer type)} \)
- \(Q_{\text{VOC}} = \text{VOC Loading lb/hr} \times \text{VOC Heat of Combustion BTU/lb} \)

Increased electrical usage is calculated using basic fan affinity laws. Pressure differentials, efficiencies and air flow are used as inputs. The general fan energy equation is as follows:

\[kW_{\text{FAN}} = \text{BHP}_{\text{FAN}} \times 0.7457; \]

\[\text{BHP}_{\text{FAN}} = (\text{Flow acfm} \times \Delta \text{Pressure inches w.c.}) / (6,356 \times \eta_{\text{FAN}} \times \eta_{\text{MOTOR}}) \]

The energy savings estimating tool for the heat exchanger installation utilize calculations based on standard heat balance and thermal efficiency equations. Mass flow and average temperature readings are used as inputs. The basic heat equations are as follows:

Heat Exchanger Effectiveness (where mass flow in = mass flow out) –

\[\varepsilon = (T_{\text{COMBUSTION}} - T_{\text{EXHAUST}}) / (T_{\text{COMBUSTION}} - T_{\text{WASTEGAS}}) \]

Oxidizer Thermal Efficiency (where mass flow in = mass flow out) –

\[\eta = (T_{\text{COMBUSTION}} - T_{\text{EXHAUST}}) / (T_{\text{COMBUSTION}} - T_{\text{WASTEGAS}}) \]

2.2.6.5 Intermediate Calculations

Intermediate Calculations are provided for oxidizer retrofits in order to display the heat balance equations. These values are displayed for the existing and proposed systems during idle and VOC destruction operations. The field elements are described below:
- **Heat Required** – This value represents the estimated heat required to raise the waste gas stream to combustion chamber temperature.

- **Heat Loss** – This value represents the estimated heat radiant loss through the oxidizer walls.

- **Heat Released** – This value represents the estimated heat released through the oxidization of the VOCs in the waste gas stream.

- **Auxiliary Heat Required** - This value represents the estimated auxiliary heat required, beyond that released through VOC oxidation, in order to achieve the total Heat Required. Natural gas usage (therms) required during operation can be derived from this value.

2.2.6.6 Estimating Tool Outputs

The thermal and electrical usages and the savings for the existing system and the proposed system are displayed on this screen. The incentive is calculated from these values.

Oxidizer Replacement

- **Therms/yr (Existing/Proposed/Savings)** – This value represents the estimated annual fuel usage.

- **kW (Existing/Proposed/Savings)** – This value represents the estimated average annual electrical demand.

- **kWh/yr (Existing/Proposed/Savings)** – This value represents the annual electrical usage.

- **Incentive (Therms/yr)** – This value represents the natural gas incentive based on the annual fuel savings.

- **Incentive (kWh/yr)** - This value represents the electrical incentive based on the annual electric usage savings.

Heat Exchanger Installation

- **Therms/yr (Existing/Proposed/Savings)** – This value represents the estimated annual fuel usage.

- **Increased Fan Electrical Consumption (equivalent therms)** – This value represents the increased fan usage for the added pressure drop associated with a heat exchanger installation. The value is converted into equivalent therms. The program uses a 10:1 electric to fuel conversion ratio.

- **Therms/yr (Net Savings)** – This value represents the fuel savings minus the increased fan usage (equivalent therms) for heat exchanger installations.

- **Incentive (Therms/yr)** – This value represents the natural gas incentive based on the annual fuel savings.
2.2.7 Gas – Steam Trap Replacement (PG&E and SDG&E Only)

This tool is used to estimate the energy savings and associated incentive for replacement of a defective steam trap. To qualify, the steam trap must have previously been identified in a recent vendor steam trap survey as having failed in the open position and a copy of the survey must be provided to the Utility Administrator with the Project Application. Note that repair or rebuilding of defective traps does not qualify for an incentive; only complete replacement with a new steam trap qualifies under the existing program rules.

Steam traps are automatic valves used to remove air, non-condensable gases and condensate from steam systems. The four most common types of steam traps include: thermodynamic, thermostatic, inverted bucket and float/thermostatic. Proper steam trap operation is crucial to efficient plant operation since failure in either an open or closed position can reduce plant efficiency or capacity.

Steam traps can fail in either a closed or open position. Failure in a closed position can result in a buildup of condensate, which can reduce the flow capacity of steam lines and the thermal capacity of heat transfer equipment. Likewise a buildup of non-condensable gases can reduce steam pressure and temperature and may also reduce the thermal capacity of heat transfer equipment. Steam trap failure in an open position results in steam passing directly through the steam trap. When this occurs the steam provides none of the intended heating service and some or all of the steam energy may be lost. Energy loss in this instance is dependent on the design of the steam trap drain or condensate recovery system. Recovery systems that direct the condensate drains back to the boiler via a feedwater heater, such as a deaerator can help reduce this energy loss.

Steam trap performance assessment is primarily concerned with determining if the trap is working properly and if not, whether it has failed in the open or closed position. Steam trap vendors can survey the steam traps in a facility, cataloging the important data for each trap. These data include the type and size of the trap along with the inlet steam conditions, condensate conditions and the operating status.

2.2.7.1 Data Inputs

A copy of the steam trap survey results that support the user input data must be supplied to the Utility Administrator with the Project Application.

Estimation tool data inputs include:

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam Trap Type</td>
<td>The type of steam trap involved (thermodynamic, thermostatic, inverted bucket, float/thermostatic)</td>
</tr>
<tr>
<td>Location</td>
<td>The physical location of the steam trap for purposes of locating the trap at the time of inspection.</td>
</tr>
<tr>
<td>Number of Traps</td>
<td>The number of leaking steam traps of this type with the same steam conditions.</td>
</tr>
<tr>
<td>Total Retrofit Cost ($)</td>
<td>Total replacement cost of all of the steam traps of this type and size.</td>
</tr>
<tr>
<td>Steam Press. (psig)</td>
<td>The pressure (gauge) of the steam flowing in the line served by the steam trap.</td>
</tr>
<tr>
<td>Steam Temp. (DegF), optional</td>
<td>The temperature of the steam flowing in the line served by the steam trap. This field is optional when using the calculated steam properties option. If left blank, the steam properties will be calculated automatically based on the saturation temperature.</td>
</tr>
<tr>
<td>Makeup Water Temp (DegF)</td>
<td>The temperature of the boiler makeup water</td>
</tr>
</tbody>
</table>
2.2.7.2 Basis for Energy Savings

Unlike other savings measures, the proposed energy use of the new steam trap is assumed to be zero while the baseline energy use of the existing trap is equal to the energy loss associated with steam passing directly through the defective trap. In other words, the energy savings are equal to the abnormal energy loss associated with the defective trap. No attempt is made to quantify steam trap energy loss for a normally functioning trap under the assumption that this “baseline” energy loss would remain the same for the replacement trap compared to the defective steam trap.

The energy savings calculation is the product of the mass flow of the escaping steam and the equivalent energy of the fuel needed by the central boiler to bring the boiler makeup water to the energy level of the escaping steam. The energy savings estimating tool estimates the mass flow of the escaping steam using the following assumptions:

- The flow is similar to that of an ideal gas through an isentropic nozzle
- The backpressure at the leaking steam trap (atmospheric pressure) is below the critical flow pressure; the flow is therefore assumed to be choked.
Steam Mass Flow Calculation

Based on these assumptions the mass flow rate, M, through the steam trap orifice is calculated using the following equation:

\[
M = \frac{C_d \times \frac{\pi D^2}{4} \times P_1 \times C_1 \times C_2}{\sqrt{T_1 + 460}}
\]

Where:

- \(C_d \) = sonic discharge coefficient for square edged orifice, 0.8, no units
- \(\pi \) = Pythagorean constant, 3.1416
- \(D \) = diameter of steam trap orifice divided by 2, inches
- \(C_1 \) = isentropic sonic mass flow constant for steam, 0.4118 sec\(^{-0.5} \)ft
- \(C_2 \) = conversion constant, 3,600 sec/h
- \(P_1 \) = pressure of steam in the line, psig
- \(T_1 \) = temperature of steam in the line, °F

The mass flow of the escaping steam is highest for a steam trap that has failed in the fully open position. While this is a common failure mode it is also true that the actual orifice size is unlikely to correspond to the full orifice size of the steam trap. The U.S. Department of Energy recommends that “lacking better data” it is prudent to assume the orifice of the defective trap is equal to one-half of the size of the fully open valve. It for this reason that the steam trap orifice diameter, \(D \), in the above expression is divided by two.

It is important to note that the estimation tool compares the estimated mass flow as calculated above with the estimated leakage rate noted in the vendor steam trap survey (user input) and uses the lesser of the two values to calculate the energy loss value.

Energy Loss Flow Calculation

Having estimated the mass flow of the escaping steam flow, the annual energy loss (ES) can then be calculated using the following expression:

\[
ES_{\text{max}} = \frac{N \times M \times H \times (h_2 - h_1)}{\text{Eff} \times C}
\]

where

- \(N \) = number of traps of a given size, no units
- \(M \) = mass flow rate per trap, lb/h
- \(H \) = annual hours during which trap is passing steam, h/yr
- \(h_2 \) = enthalpy of steam at line pressure, Btu/lb
- \(h_1 \) = enthalpy of makeup water, Btu/lb
- \(\text{Eff} \) = boiler efficiency (no units)
- \(C \) = conversion constant, 100,000 Btu/Therm

The estimation tool software will use this energy loss value unless the user has indicated that the condensate energy is recovered. If the user has indicated that the thermal energy of the escaping steam is recovered (user selected YES in response to “Condensate Recovered?” input) then the estimation tool software reduces the above estimated value using the following expression:

\[
ES = (1 - \text{Eff}^\prime) \times ES_{\text{max}}
\]
This reduction is based on the assumption that the boiler will need to replace the escaping steam and the system will therefore experience the loss associated with boiler inefficiency while this steam is produced.
2.2.8 Lighting - Lighting Retrofit

The Lighting Estimating Software tool addresses the replacement of existing lamps and fixtures with units of higher efficiency. Proposed equipment for T8 and T5 linear fluorescent lighting upgrades must meet the Color Rendering Index and Lamp Life specifications listed in Table 1-2, Section 1.4 for definition. LED fixtures must be specifically listed in or comply with the testing standards and requirements described in Appendix I. Table 11 includes EnergyStar and Utility approved LED fixtures. LED lamp-only replacements are not eligible.

De-lamping measures are eligible only as an integral part of a lighting efficiency upgrade. The removal of bulbs and/or the disabling of fixtures alone are not eligible for the program. Lighting retrofits that include the retention of existing ballasts are eligible only if the ballasts have at least five year of useful life remaining. The Utilities may require the Project Sponsor to certify the remaining useful life of the existing ballast.

Multiple line items (i.e. groupings of similar fixtures and similar usage patterns) can be entered as a single measure. Lighting fixtures and the associated savings are grouped by usage. Usage groups may include offices, restrooms, hallways/stairs, display lights, sales floor, process areas, and parking areas or structures. Inputs for each usage group should include a brief description of the area affected by the lighting, as well as specifications for both existing and new equipment. Pull-down menus are used to simplify this process, but input of custom fixtures is also supported.

If a particular lamp/fixture/ballast combination is not contained within the pull-down menus, N/A# will appear in the Watts/Fixture column and you must provide the necessary specifications by including a copy of the manufacturer’s specification sheet along with the submittal documents. For measures involving partial delamping (e.g., removing two lamps from a three-lamp fixture), spot measurements used to verify fixture loads must be input into the Proposed Equipment—Manufacturer’s Data/Spot Measurements table.

For lighting measures you may estimate the operating hours, but you should be able to support the estimate. Typically proposed operating hours should not differ from existing operating hours.

2.2.8.1 User Inputs

User inputs can be divided into two basic categories - measure information and equipment specifications (existing/proposed).

Measure Information

- **Line Item** – Select a unique line item number for each lighting retrofit, consisting of identical equipment, within the same usage group.

- **Usage Group** – Enter an identifying name for a grouping of fixtures that have similar operating characteristics (i.e. they are turned off and on at the same time). A usage group may have multiple line items containing sub-groupings of identical fixture retrofits.

- **Area Description** – Enter a short description of the area of the proposed fixture retrofit (e.g. Warehouse, Building 123, Conference Room, etc.)

Equipment Specifications (Existing/Proposed)

- **Line Item** – Select the appropriate line item number for each lighting retrofit.

- **Num Fixtures** – Enter the number of proposed/existing fixtures.

- **Hours of Operation** – Enter the number of annual hours the existing fixtures operate. The proposed fixture operating hours are the same as the existing hours and can not be modified.
- **Fixture Type** – Choose Standard if the fixture is identified in the Standard Table of Fixture Wattages in Appendix B. Choose Custom if the fixture is not identified on this table or the Itemized (Express Efficiency) Measures Table 2.1 above. Measures identified on the Itemized (Express Efficiency) Measure table are not eligible for the Customized Approach.

- **Lamp Type** – Select the lamp type (i.e. T12 Fluorescent, HPS, Incandescent, etc.)

- **Tube Length** – For tube fixtures select the tube length in inches. For non-tube fixtures select N/A.

- **Ballast Type** – Select the ballast type for fixtures equipped with ballasts (i.e. Magnetic, Electronic, etc.). Select N/A for non-ballast fixtures.

- **Lamps/Fixture** – Select the number of lamps per fixture.

- **Watts/Lamps** – Select the nominal watts per lamp.
2.2.9 Lighting - Lighting Controls

The Lighting Controls savings estimation tool covers the installation of occupancy sensors, time clocks, and lighting energy management systems (EMS) for lighting replacements and existing lighting systems. Measures involving day-lighting or daylight harvesting cannot use this tool and must use the Engineering Calculations approach.

Lighting Controls line items are grouped by lighting equipment type and space type. Individual controls that regulate different light types or have different usage patterns should be grouped separately.

The Lighting Controls estimating software calculates the energy savings as the difference between the energy usage of the lighting equipment in an uncontrolled (pre-installation) and a controlled (post-installation) state. The energy demand of the lighting equipment is calculated from information entered by the user. Information such as, lamp and ballast specifications, are selected from pull-down lists.

For EMS and timeclock type measures, the user enters previous operating hours (pre-installation) and new operating hours (post-installation). These hours must correspond to actual hours the lights are energized prior to the installation of the controls and the proposed hours from the scheduled operation. The programmed schedule in the EMS will be independently verified by the Utility Administrator Inspector.

For occupancy sensors, enter previous operating hours (pre-installation) and a space type (i.e., warehouse, office, bathroom, etc.). The software estimates the amount of savings (time the lights will be de-energized by the occupancy sensor) based on the space type and applies it to the baseline (pre-installation) hours. The energy savings (kWh) are calculated as the product of the lighting energy demand (kW) and the reduction in on-time (hours). Table 2-1 lists the allowable reduction in operating time based on space type.

<table>
<thead>
<tr>
<th>Space Type</th>
<th>% Savings</th>
<th>Space Type</th>
<th>% Savings</th>
<th>Space Type</th>
<th>% Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly</td>
<td>45</td>
<td>Industrial</td>
<td>45</td>
<td>Restroom</td>
<td>45</td>
</tr>
<tr>
<td>Break room</td>
<td>25</td>
<td>Kitchen</td>
<td>30</td>
<td>Retail</td>
<td>15</td>
</tr>
<tr>
<td>Classroom</td>
<td>30</td>
<td>Library</td>
<td>15</td>
<td>Stair</td>
<td>25</td>
</tr>
<tr>
<td>Computer Room</td>
<td>35</td>
<td>Lobby</td>
<td>25</td>
<td>Storage</td>
<td>45</td>
</tr>
<tr>
<td>Conference</td>
<td>35</td>
<td>Lodging (Guest Rooms)</td>
<td>45</td>
<td>Technical Area</td>
<td>35</td>
</tr>
<tr>
<td>Dinning</td>
<td>35</td>
<td>Open Office</td>
<td>15</td>
<td>Warehouses</td>
<td>45</td>
</tr>
<tr>
<td>Gymnasium</td>
<td>35</td>
<td>Private Office</td>
<td>30</td>
<td>Other</td>
<td>15</td>
</tr>
<tr>
<td>Hallway</td>
<td>25</td>
<td>Process</td>
<td>45</td>
<td>Parking Garage</td>
<td>15</td>
</tr>
<tr>
<td>Hospital Room</td>
<td>45</td>
<td>Public Assembly</td>
<td>35</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.2.9.1 User Inputs

User inputs can be divided into two basic categories - measure information and equipment specifications.

Measure Information

- **Line Item** – Select a unique line item number for each lighting control retrofit, consisting of identical equipment within the same usage group.
• **Control Type** – The control technologies eligible for the offering using the Estimating Software are EMS, occupancy Sensors, and time clocks. Day-Light Harvesting or Day-Lighting systems must use the Engineering Calculations approach to estimate energy savings.

• **Usage Group** – Enter an identifying name for a grouping of lighting controls that have similar operating characteristics (i.e. they are turned off and on at the same time).

• **Area Description** – Enter a short description of the area covered by the lighting controls (e.g. Warehouse, Building 123, Conference Room, etc).

Equipment Specifications

• **Line Item** – Select the appropriate line item number for each lighting retrofit.

• **Num Fixtures** – Enter the number of proposed/existing fixtures.

• **Previous Op Hours** – Enter the number of annual hours the fixtures operate prior to the installation of lighting controls.

• **New Op Hours** - Enter the number of annual hours the fixtures operate after the installation of lighting controls. Automatically calculated for occupancy sensor measures.

• **Space Type** – Select the space type from the pull-down list that most closely describes the primary function/purpose of the illuminated area.

• **Fixture Type** – Choose Standard if the fixture is identified in the Standard Table of Fixture Wattages in Appendix B. Choose “Custom” if the fixture is not identified on this table.

• **Lamp Type** – Select the lamp type (i.e. T12 Fluorescent, HPS, Incandescent, etc).

• **Tube Length** – For tube fixtures select the tube length in inches. For non-tube fixtures select N/A.

• **Ballast Type** – Select the ballast type for fixtures equipped with ballasts (i.e. Magnetic, Electronic, etc.). Select N/A for non-ballast fixtures.

• **Lamps/Fixture** – Select the number of bulbs per fixture.

• **Watts/Lamps** – Select the nominal watts per bulb.
2.2.10 Other - A/C Economizers

This tool calculates savings for the addition of an economy cycle on existing HVAC equipment. The 2010 Statewide Customized Offering software calculates savings using the Engage Software for a measure of this type. The Engage software is a stand-alone, DOE2 based modeling program. If you believe the simulation does not fairly represent the project's savings, use the engineering calculations approach to estimate the energy savings.

This tool has four input screens. The following inputs should be noted:

- **Building Location** - From the pull-down menu, select a city that best represents the building location; this will, in turn, automatically select a weather zone or select the weather zone directly from the pull down menu.

- **Building Type** - Select a “predefined” building configuration from the list of “prototypical” buildings (see Appendix D for detailed descriptions). If one of the predefined building types is a fair representation of your project site, you can simply input the building location, square footage of conditioned space, and building operating hours.

- **Vintage** – Select the vintage of the building.

- **Building Area** – Enter the total building area.

- **HVAC System Type** – Select a “predefined” HVAC system type from the drop down list. Choices change depending on building type selected.

- **Building Seasons** - Sheet 2 and Sheet 3 are used to input the operating schedule of the building.
 - **Sheet 2** – The user has the ability to define up to three seasons.
 - **Sheet 3** – The user may select the appropriate building shell and define the hourly schedule of each season.

Air-Side Economizers inputs (Sheet 4):

- **Cooling Equipment Served (tons):** Total capacity of cooling equipment served by economizers. Indicate the cooling capacity of all Cooling Equipment Served by Economizers. Input should be in tons of total (sensible + latent) cooling capacity, where the tons input here represents the sum of the rated (i.e., nominal) capacity of all systems for which economizers are being added or repaired.

- **Baseline Economizer Type** - Use these inputs to describe the existing economizer type:
 - **Drybulb Temperature** – the economizer is enabled whenever the outside air drybulb temperature is below the maximum allowed drybulb temperature (i.e., high limit drybulb temperature).
 - **Enthalpy** – the economizer is enabled whenever the outside air enthalpy is below the maximum allowed enthalpy (i.e., high limit enthalpy)

- **Proposed Economizer Type** - Use these inputs to describe the economizer type being installed or repaired:
 - **Drybulb Temperature** – the economizer is enabled whenever the outside air drybulb temperature is below the maximum allowed drybulb temperature (i.e., high limit drybulb temperature).
 - **Enthalpy** – the economizer is enabled whenever the outside air enthalpy is below the maximum allowed enthalpy (i.e., high limit enthalpy).
- **Minimum Outside Air Control Method** - These inputs are used only with Variable Air Volume (VAV) systems. Use this input to describe the Minimum OA Control Method employed by the VAV air handlers on which economizers are being installed or repaired.
 o **Fraction of Design Flow** – this selection indicates that code-required levels of outside air are maintained even when VAV systems back off from their design (maximum) flow. This will have the effect of providing a constant amount of outside air (in terms of flow), which during times of reduced VAV flow will require that the outside air be increased as a fraction of hourly system air flow. Constant outside air flow on VAV systems can only be achieved with special controls not commonly available in most VAV systems. Newer packaged VAV systems now usually include controls necessary to accomplish this. In built-up CHW VAV systems, this type of constant outside air flow can only be achieved using flow sensors or other means to detect outside air flow and then adjusting outside air dampers accordingly.
 o **Fraction of Hourly Flow** – this selection indicates that code-required levels of outside air may not necessarily be maintained when VAV systems back off from their design (maximum) flow. This will have the effect of providing a reduced amount of outside air (in terms of flow) when the VAV system reduces flow from maximum levels. Under this scenario, outside air flow remains a constant fraction of hourly system air flow. This Minimum OA Control Method is most common, especially in built-up CHW VAV systems, where the controls necessary to achieve constant outside air flow are not provided.
2.2.11 Other - Carbon Monoxide Sensors for Parking Garages

This tool provides the energy savings estimate for exhaust fans in enclosed parking structures when these fans are controlled by Carbon Monoxide sensors. Exhaust fans are typically on 24 hours/day or controlled by time clocks. Controlling fan on-time using CO sensors to maintain an acceptable limit on CO in the parking structures can result in significant energy savings.

A number of parking structures with their exhaust fans under CO control were metered to determine the run-time of the exhaust fans.

This tool is appropriate for all building types with enclosed parking structures.

Data inputs for CO mitigation for parking structures include:

- **Manufacturer of CO Controls/Sensors** - Enter the name of the manufacturer of the CO Controls/Sensors.
- **Model Number of CO Controls/Sensors** - Enter model number of CO Sensors.
- **Number of CO Sensors in Parking Structure** - Enter the number of CO Sensors in Parking Structure.
- **Total Exhaust Fan Motor(s) HP** - Enter the summation of HP for all exhaust fans.
- **Average Exhaust Fan Motor Efficiency** - Enter the motor efficiency if there is only one exhaust fan. If there is more than one exhaust fan, calculate an average motor efficiency.
- **Annual Operating Hours before CO Controls** - Provide the annual operating hours of the exhaust fans before the installation of the CO Sensors.
- **Savings Estimate** - The savings estimate and incentive is provided on screen two of this tool.
2.2.12 Other - Cold Storage Rapid Close Doors

Rapid close doors save energy by lowering infiltration. This can be achieved by improving the seal of the doorway, increasing the door speed and/or reducing the amount of time the door simply stands open. The methodology for estimating energy savings for this measure is well documented (2002 ASHRAE Refrigeration Handbook, Refrigeration Load, Page 12.3).

The software allows the user to specify multiple retrofit types. Retrofit types must share similar operating schedules, doorway specifications, traffic flow, etc. The required inputs are detailed below.

Site Information:

- **Number of Doorway Types** -- Enter the number of doorway retrofit types. Recall each type must have similar characteristics and usage patterns.
- **City** – Select the site location.

Doorway Characteristics (Existing and Proposed): For each doorway type, edit the existing and proposed doorway and operating characteristics. To edit a doorway type, the user must highlight it in the table and click Edit Existing, Edit Proposed or Edit Operation, or edit it through the Equipment Description and Operating Characteristics Forms by selecting the doorway type number.

- **Building Identification** – Enter the building identification.
- **Number of Doorways** – Enter the number of like doorway retrofits.
- **Doorway Width (ft)** – Enter doorway width.
- **Doorway Height (ft)** – Enter doorway height.
- **Opens to** – Select the door opening type. The options are freezer-to-cooler, freezer/cooler-to-loading dock, conditioned and unconditioned, and various exterior door openings. If the door does not open to the outside or an unconditioned loading dock, the user needs to input the cooler or loading dock temperature and a default value of 80% relative humidity is assumed but can be adjusted. See below.
- **Refrigeration System Efficiency** – Enter the rated efficiency of the refrigeration system and select the appropriate units. The rated efficiency should be based on design conditions at entering ambient air temperatures of 95°F dry-bulb for air-cooled condensers and 75°F wet-bulb for evaporative-cooled condensers, and 85°F entering water temperature for water-cooled condensers. If the door opens to a conditioned space, the exterior cooling efficiency needs to be input.
- **Condenser Type** – Selection the refrigeration system condenser type: air-cooled, water-cooled, or evaporative-cooled.
- **Controls** – Select the refrigeration controls: fixed or floating head.
- **Doorway Protective Device** – Select from the following doorway protective devices: none, strip curtains, strip curtains with air-lock vestibule, dual impact (or push-through) doors with air-lock vestibule, vertical non-recirculating air curtain, dual horizontal recirculating air curtain, dual horizontal recirculating air curtain with outer strip curtain, standard-folding doors, standing-sliding curtains, standard-sliding doors, rapid-folding doors, rapid-sliding curtains and rapid-sliding doors.
- **Door Insulation** – Enter the door insulation type. This information is for review purposes only; it does not impact the savings calculation.
- **Insulation Thickness (in.)** – Enter the door insulation thickness. This information is for review purposes only; it does not impact the savings calculation.

- **U-Factor (Btu/hr-ft ·°F)** – Enter the overall coefficient of heat transfer (U-Factor). The U-Factor accounts for inside surface conductance, total door thermal conductance and outside surface conductance. Please provide manufacturer’s specification for the existing, if available, and proposed doors. For a summary of the principles of heat transfer, refer to the 2001 ASHRAE Fundamentals Handbook, Pages 3.2-3.3. Other variables that may impact the thermal conductivity are wind and solar exposure. For a detailed discussion of their effects, refer to the 2001 ASHRAE Fundamentals Handbook, Pages 25.12 and 30.11, and 2002 ASHRAE Refrigeration Handbook, Page 12.2.

- **Door Open-Close Time (sec)** – Enter door open-close time. This is the time it takes for the door to open and close. For conventional pull-cord operated doors, this value typically ranges from 15 to 25 seconds per passage; for high speed doors, it can range from 5 to 10 seconds depending on the means of control and the control setpoint.

- **Open Doorway Protective Device** – The open-doorway device is a secondary device that restricts infiltration when the main door is open. In some cases, the “doorway” and “open-doorway” protective devices may be the same. For example, strip curtains may be the only doorway protective device. Select from the following open doorway protective devices: none, strip curtains, strip curtains with air-lock vestibule, dual impact (or push-through) doors with air-lock vestibule, vertical non-recirculating air curtain, dual horizontal recirculating air curtain, dual horizontal recirculating air curtain with outer strip curtain, rapid-folding doors, rapid-sliding curtains and rapid-sliding doors.

Operating Characteristics - The user may input annual or monthly values for the following. To input monthly value select the check box.

- **Loading Dock / Cooler Temperature (°F)** – If the doorway does not open to the outside or to an unconditioned space, the user needs to specify the annual or monthly temperatures of the loading dock or cooler. If this cases, the default relative humidity is 80%, which can be edited by the user.

- **Inside Temperature (°F)** – Enter storage temperature setpoint.

- **Weekday Hours** – Enter the average work hours per weekday.

- **Saturday Hours** – Enter the average work hours on Saturday.

- **Sunday Hours** – Enter the average work hours on Sunday.

- **Averages Openings per Hour** – Enter the average openings (passages) per hour for this door type. This is how many times the door opens and closes as a result of foot or forklift traffic.

- **Average Open Time, Pre and Post (minutes)** – Enter average door open time, before and after installation. This is the time the door simply stands open. This could be the result of multiple forklift traffic or manually keeping the door open.
2.2.13 Other - Compressed Air System Upgrades

This tool includes a variety of compressed air system measures. These include:

- Direct replacement of one or more compressors with compressor(s) of higher efficiency, including compressors equipped with variable speed drives,
- Installation of new compressor motors to service increased production capacity,
- Installation or upgrade of system storage, and
- Installation of intermediate pressure/flow control valves.

2.2.13.1 Compressor and Control Types

The software accommodates up to 3 compressors of varying types and sizes. The compressor types and associated controls that will be accepted will continue to correspond to the types accepted by the AirMaster+ software (see Table 2-2). The only exception is that variable speed drive controls have been added to the rotary screw compressor types.

Table 2-2. Equipment Included in Air Compressor Estimation Software

<table>
<thead>
<tr>
<th>Compressor Types</th>
<th>Control Types</th>
<th>Size (hp)</th>
<th>Pressure (psig)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-stage lubricant-injected rotary screw</td>
<td>Inlet modulation w/o unloading Inlet modulation w/unloading Load/unload Variable displ. w/unloading Variable speed drive</td>
<td>25–500</td>
<td>100–200</td>
</tr>
<tr>
<td>Two-stage lubricant-injected rotary screw</td>
<td>Inlet modulation w/o unloading Inlet modulation w/unloading Load/unload Variable displ. w/unloading Variable speed drive</td>
<td>100–500</td>
<td>100–200</td>
</tr>
<tr>
<td>Two-stage lubricant-free rotary screw</td>
<td>Load/unload Variable speed drive</td>
<td>50–500</td>
<td>80–150</td>
</tr>
<tr>
<td>Single-stage reciprocating</td>
<td>Load/unload</td>
<td>25–75</td>
<td>80–125</td>
</tr>
<tr>
<td>Two-stage reciprocating</td>
<td>Load/unload</td>
<td>25–400</td>
<td>80–125</td>
</tr>
</tbody>
</table>

2.2.13.2 Baseline Compressor Loading

The project sponsor must enter an individual hourly load profile for each compressor, for up to 4 types of system operation (“day-types”). A load profile in either kW or acfm will be accommodated. Values entered in acfm are summed to arrive at the system usage profile and will also be converted into an equivalent kW demand for each compressor, using a generic “performance map” for each type of compressor. The project sponsor must identify day-types as having weekday operation (or not) so that the software can estimate the peak demand savings. Inputs for the estimated days per week and weeks per year are required for each day-type so that the software can estimate the annual energy usage.

The software will continue to use the AirMaster+ specific power consumption as the minimum compressor efficiency. Thus the software will correct the baseline power if the baseline compressor(s) does not meet the minimum specific power consumption requirement.
2.2.13.3 Efficiency Measure – Multiple Compressor Replacement or Upgrade

The tool will accommodate replacement or upgrade of multiple compressors. To accomplish this, the software must be able to reasonably estimate how the system flow will be distributed amongst the various compressors for each hour of the day and for each day-type. To simplify the analysis the project sponsor must:

- Specify each compressor as a Lead/Baseload, Additional Baseload or a Variable/Trim machine. Since a site is permitted up to three compressors, two may be designated as baseload and one as variable/trim. The software will automatically designate the compressor as variable/trim if “1” compressor is selected on the initial site set up screen.

- Keep the compressor designations fixed for all day-types and all hours of operation (i.e., the compressors must always be sequenced in the same fashion). Note that baseline designations may differ from proposed that in both cases they must be fixed across all day types.

The software checks that new compressors meet the AirMaster+ specific power consumption requirement and will flag compressors that do not comply. The software also checks for the presence of automatic shut-off timers and/or sequencing controls (user inputs) that permit compressors to be turned off if fully unloaded. If these devices/controls are not present, then the software assumes that the compressor will operate at the fully unloaded operating point during any hour when a system flow is required (even if this flow is supplied by another compressor).

Note that the software assumes that each compressor operates at the same pressure (nominal supply pressure) even though each compressor will operate at a slightly different pressure during actual operation. The user inputs for cut-in and cut-out pressure are used solely to estimate compressor cycle time (in conjunction with system storage) for compressors equipped with unloading type controls.

Compressors equipped with variable speed drives are modeled using a straight-line approximation similar to a reciprocating compressor with on/off control except an additional 5% is added to the input kW to account for VSD drive inefficiency. The software will not allow VSD operation below 20% of rated capacity but will instead unload other compressor(s) to achieve the minimum flow.

2.2.13.4 Efficiency Measure – Intermediate Flow/Pressure Controllers

The software calculates savings associated with reduced compressor(s) power demand when supplying less overall airflow (due to a system pressure reduction) downstream of the flow/pressure controller. The user must input both the upstream (nominal supply pressure) and downstream pressure (nominal system operating pressure or end use pressure) that will be used with the new controller. The software uses these values to estimate the change in system airflow associated with leakage or other unregulated end uses (without individual pressure regulators). This reduced system airflow is used along with the upstream pressure to estimate the change in compressor energy use. Only unregulated end uses will be reduced and it is for this reason that the project sponsor must enter the estimated leakage rate (default of 5%) and the percentage of total system airflow represented by other unregulated end uses (default is 0%). Since storage located downstream of the controller will not have the same impact on compressor operation as storage located upstream of the controller the user must input the amount (%) of the existing system volume that is located upstream and downstream of the controller. These percentages are exclusive of any new storage, which is handled by inputs for the Storage System Upgrade measure.
2.2.13.5 Efficiency Measure – Storage System Upgrade
The program software estimates savings associated with increased storage capacity. However, appreciable savings are only possible if the increased capacity permits one or more of the compressors to be turned off (cycle time exceeds auto shut down timer setting) that would otherwise operate at no load. Thus savings may not be indicated with certain types of compressors and controls. It is also important to note that storage location must be considered when an intermediate flow/pressure controller is involved. The project sponsor is therefore required to identify the amount of the new storage that will be located upstream and downstream of the intermediate flow/pressure controller (if the intermediate flow controller measure is also selected).

2.2.13.6 User Inputs
User inputs can be divided into four basic categories compressed air system, compressor description, usage/load profile and EEM selections.

- **Compressed air system** - Inputs include site location, number of compressors, nominal system (end use pressure) and compressor operating pressures (nominal supply pressure), and system volumes (total system and receivers).

- **Compressor inputs (for each compressor)** - Include nameplate data, operating mode (lead, variable/trim, etc.), control method and settings, and drive motor nameplate data (compressor and air-cooler).

- **Usage profile/load data inputs** - Include number and type of day-types, profile data type, days per week and weeks per year of operation for each day-type, and hourly air flow or kW demand data for each compressor.

- **EEM Inputs for compressor replacement / upgrade** - Inputs allow the project sponsor to identify which compressors will be upgraded, replaced or eliminated as well as changes to the operating mode. Changes specific to new compressors are subsequently entered via the compressor input screen(s).

- **EEM Inputs for intermediate flow/pressure controller** - Include pressure settings (upstream and downstream), storage volumes (% of existing volume) upstream and downstream of the controller, leakage air flow and other unregulated air flow (% of total flow).

- **EEM Inputs for storage upgrade** - Include total additional storage volume and location relative to compressor(s) and end uses (if an intermediate flow controller is also specified).
2.2.14 Other - Demand Control Ventilation (DCV)

2.2.14.1 Background
Outside air is typically introduced at a fixed rate, into buildings for the peak design occupancy level. Occupancy levels vary significantly during a buildings operating hours. Demand Control Ventilation (DCV) varies the amount of outside air introduced into the building based on occupancy level. The energy conserving attribute of DCV is heavily dependent on the variability of the occupancy level and climate zone. Reducing the amount of outside air can reduce the amount of energy to heat or cool the outside air in certain climate zones. Reducing outside air in certain climate zones (cool and dry) can increase energy consumption because the cooling effect of the outside air is reduced (no economy cycle scenario).

Carbon Dioxide is used as an indicator of occupancy level. With the use of CO₂ sensors and a prescribed CO₂ concentration set point for the space, the amount of outside air can be varied. This is the basis of DCV; the amount of outside air introduced is based on the “demand” for it. In all cases DCV is overridden by economy cycle controls. When outside air (economy cycle) can be beneficial for cooling, DCV is not allowed to reduce the amount of outside air introduced.

2.2.14.2 Energy Savings Calculations
The tool developed for the 2009 program is based on Honeywell’s “Savings Estimator”. This program is also the basis for the California Energy Commissions VSAT (Ventilation Strategy Assessment Tool), which was used for the CEC’s ventilation assessment program. The Savings Estimator is an hourly program that evaluates the energy impact of DCV.

This tool evaluates the energy impact for cooling (not from heating) from the application of DCV control for rooftop package units. The default occupancy levels are based on work done by Lawrence Berkeley Labs (LBL). For each building type there is a default occupancy schedule used that cannot be changed. The fixed ventilation rate is determined by the peak design occupancy and ASHRAE Standard 62-1999. The thermostat set-point is 75 °F for the occupied period.

Data inputs for the Demand Control Ventilation action include:

- **Manufacturer of DCV Controls** - Enter the name of the manufacturer of the DCV controls.
- **Model Number of DCV Controls** - Enter Model Number of DCV Controls.
- **City** - From the pull-down menu, select a city that best represents the building location; this will, in turn, automatically select a weather zone. (The program uses the California Energy Commission’s CTZ weather data, which breaks up the state into 17 weather zones.)
- **Economy Cycle** - Specify if an economy cycle is present in the rooftop equipment.
- **Equipment Efficiency** - Select Low (EER=8), Medium (EER=10) or High (EER=12) equipment efficiency for the rooftop package units.
- **Building Type** - From the pull down menu, select one of the 4 building types offered.
• **Building Area** - Enter the area in square footage of the building space that will have DCV. This could be several class rooms in a school, a portion of an office building or the dining area in a restaurant. This tool is primarily for smaller buildings. The accuracy is degraded when the area is larger than:

<table>
<thead>
<tr>
<th>Building Type</th>
<th>Square Footage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restaurant</td>
<td>21,000 ft²</td>
</tr>
<tr>
<td>School</td>
<td>38,000 ft²</td>
</tr>
<tr>
<td>Retail</td>
<td>300,000 ft²</td>
</tr>
<tr>
<td>Small Office</td>
<td>25,000 ft²</td>
</tr>
</tbody>
</table>

• **Savings Estimate** - The savings estimate and incentive is provided on screen two of this tool.
2.2.15 Other - Injection Molding Machines

High-efficiency injection molders use variable-speed drives (VSDs) and other energy efficiency techniques to reduce the energy usage of plastic injection molders. Standard-efficiency injection molders use a large hydraulic pump to inject the plastic and operate the molds. The pumps operate at full power continuously, bypassing the fluid when the pressure is not required. The VSD varies the speed of the motor to match the power requirements of the molders, cycling up and down the motor speed.

A second approach uses variable volumes to achieve similar energy savings. Recently, a new type of machine has been introduced that does not use a hydraulic system to generate the pressure to inject the plastic, but instead generates the force with high-torque servomotors. Besides the drive system, other components of the machine such as the heaters have been improved. These machines are referred to as all-electric injection molders. They save significantly more energy than the variable-volume/variable-speed machines. All three types of machines are accepted as efficiency measures and are included in the estimation software.

2.2.15.1 Data Inputs

Copies of manufacturer’s specifications that support the proposed nameplate values must be supplied to the Utility Administrator with the Project Application.

Data inputs include:

- Model/serial number
- Machine type: Standard Hydraulic, Variable volume, variable speed drive, all electric
- Capacity (tons)
- Hourly production rate: lbs/hr produced
- Annual operating hours - The annual hours must be the best estimate of the actual hours the machine is producing parts.

2.2.15.2 Basis for Energy Savings

The energy savings estimating tool for high efficiency injection molders uses equations that are based on energy use per pound (kw/lb) of plastic produced. These parameters are based on measured performance data, which take into account variations in part size, production rates, and cycle time. Although individual machines may vary from these results, the predicted energy savings can be used for high-efficiency injection molders that produce at least 0.275 pounds of plastic per ton of capacity. For machines with lower production rates, the energy savings are reduced by 20%. These low-production machines typically produce small, intricate parts requiring longer hold times, thus reducing the energy savings. The average specific energy use for the four types of injection molders is listed in Table 2-3.

Table 2-3. Specific Energy Use of Different Injection Molders

<table>
<thead>
<tr>
<th>Machine Type</th>
<th>Specific Energy Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard hydraulic</td>
<td>0.91 kWh/kg</td>
</tr>
<tr>
<td>Variable-volume hydraulic</td>
<td>0.55 kWh/kg</td>
</tr>
<tr>
<td>Variable-speed hydraulic</td>
<td>0.55 kWh/kg</td>
</tr>
<tr>
<td>All-electric</td>
<td>0.20 kWh/kg</td>
</tr>
</tbody>
</table>
The energy savings of the injection molder are based on the proposed production rates. The energy savings resulting from increased production are eligible in the 2009 program.

The Project Sponsor is required to document the existing and proposed average production rates (lb/hr) of the injection machines. These rates shall take into account variation in parts produced.
2.2.16 Other – Low Solar Heat Gain Coefficient Windows

Low Solar Heat Gain Coefficient Windows save energy by reducing the transmission of heat from the outside to the inside of a structure during the hotter months. This results in a reduction in cooling load. In addition, during the colder months, heat loss is reduced due to an increase in the U-factor of the window.

The 2010 Statewide Customized Offering software calculates savings using the Engage Software for a measure of this type. The Engage software is a stand-alone, DOE2 based modeling program. If you believe the simulation does not fairly represent the project’s savings, use the engineering calculations approach to estimate the energy savings.

For cooling and heating units not covered by this estimating tool, you will have to use the Engineering Calculations approach to determine the energy savings.

Take special note of the following:

- **Building Location** - From the pull-down menu, select a city that best represents the building location; this will, in turn, automatically select a weather zone or select the weather zone directly from the pull down menu.

- **Building Type** - Select a “predefined” building configuration from the list of “prototypical” buildings (see Appendix D for detailed descriptions). If one of the predefined building types is a fair representation of your project site, you can simply input the building location, square footage of conditioned space, and building operating hours.

- **Vintage** – Select the vintage of the building.

- **Building Area** – Enter the total building area.

- **HVAC System Type** – Select a “predefined” HVAC system type from the drop down list. Choices change depending on building type selected.

- **Building Seasons** - Sheet 2 and Sheet 3 are used to input the operating schedule of the building.
 - **Sheet 2** – The user has the ability to define up to three seasons.
 - **Sheet 3** – The user may select the appropriate building shell and define the hourly schedule of each season.

Low Solar Heat Gain Coefficient Windows inputs (Sheet 4):

- **Orientation** - Use these check boxes to indicate up to four orientations per glass type. The software allows orientation assignments for up to two glass types. The orientations selected for the existing windows case is applied to the proposed windows case.

- **Performance Data** – Select either NFRC (national fenestration rating council) or glass manufacturer indicating the source utilized to obtain each window types U-factor and SHGC (solar heat gain coefficient). Solar Heat Gain Coefficient (SHGC) is the ratio of the solar heat gain entering the space through the window to the incident solar radiation. The U-factor is the overall coefficient of thermal transmittance of the whole window assembly (glass + frame), in Btu/(hr-sf-ºF), including air film resistance at both surfaces.

- **Window Area** – Enter total building window area in square feet, or enter window area by type and orientation in square feet.

- **Savings Estimate** - The estimated savings are reported on the fifth screen of this tool.

Low Solar Heat Gain Coefficient Windows save energy by reducing the transmission of heat from the outside to the inside of a structure during the hotter months. This results in a reduction...
in cooling load. In addition, during the colder months, heat loss is reduced due to an increase in the U-factor of the window.

The 2009 software calculates savings using the DOE2 hourly energy simulation method. If you believe the simulation does not fairly represent the project’s savings, use the engineering calculations approach to estimate the energy savings.

For cooling and heating units not covered by this estimating tool, you will have to use the Engineering Calculations approach to determine the energy savings.

Take special note of the following:

- **Building Type** - Select a “predefined” building configuration from the list of “prototypical” buildings (see Appendix D for detailed descriptions). If one of the predefined building types is a fair representation of your project site, you can simply input the building location, square footage of conditioned space, and building operating hours.

- **HVAC System Type** – Select a “predefined” HVAC system type from the drop down list. Choices change depending on building type selected.

- **Orientation** - Use these check boxes to indicate up to four orientations per glass type. The software allows orientation assignments for up to two glass types. The orientations selected for the existing windows case is applied to the proposed windows case.

- **Performance Data** – Select either NFRC (national fenestration rating council) or glass manufacturer indicating the source utilized to obtain each window types U-factor and SHGC (solar heat gain coefficient).

- **Window Area** – Enter total building window area in square feet, or enter window area by type and orientation in square feet.

- **Building Location** - From the pull-down menu, select a city that best represents the building location; this will, in turn, automatically select a weather zone. (The program uses the California Energy Commission’s CTZ weather data, which breaks up the state into 17 weather zones.)

- **Savings Estimate** - The estimated savings are reported on the third screen of this tool.
2.2.17 Other - Motors Replacement or Early Retirement for Motors

This tool covers early retirement of continuous-rated, polyphase squirrel cage induction motors rated from 1 to 500 horsepower. These motors include NEMA Design A and B, three-phase, 230/460 VAC, single-speed (900, 1200, 1800, and 3200 RPM) motors having open drip-proof (ODP) or totally enclosed fan-cooled (TEFC) or explosion-proof (TXPL) enclosures.

This tool establishes the existing motor (baseline) efficiency to correspond to the 1992 Energy Policy Act (EPAct) minimum, except in the case of Early Retirement, which uses the industry standards at the time the motor was installed. If it does qualify for early retirement, the energy savings are calculated using the baseline efficiencies of the actual equipment rather than the current minimum standards. This results in a larger incentive than would be possible using the traditional Customized Approach. If the motor has been recently rewound, it may also qualify for early retirement. To establish the rewinding of a motor and when it was performed, supporting invoices are required.

Data inputs for existing and proposed motors include:

- **Year Manufactured** – Enter the year that the existing motor was manufactured.
- **Rewound** – Select “yes” if the existing motor has been rewound.
- **Year Rewound** – If the motor has been rewound please enter the year in which it occurred.
- **General data** - Includes information such as the location (e.g., basement) and function of existing/replacement motors.
- **Nameplate data** - A comprehensive list of manufacturer’s data is provided via pull-down menus. Copies of manufacturer’s specifications that support the proposed motor nameplate values entered into the software must be submitted to the Utility Administrator with the Project Application.
- **Load type** - (e.g., fan, pump, mill, etc.).
- **Estimated hours of operation** - Operating hours under normal load conditions.
- **Existing motor power measurements** - These are critical for establishing brake horsepower (BHP, motor load). The preferred method is to measure power in kW, using a true RMS power meter. Next best would be to measure voltage, current, and power factor with a true RMS meter. At a minimum, both the voltage and current must be measured. Ensure that all voltages are measured line-to-line and measurements are taken under normal motor operation conditions. If power factor is not measured, then the software will estimate a power factor. The measured values are used to establish the load on the existing motor.

For multiple motors with different horsepower, treat each motor size as a separate measure.
2.2.18 Other - Professional Wet Cleaning Replacement

This measure is for the conversion of an existing dry cleaning (Perchlorethylene) facility to a professional wet cleaning facility. This measure is only for converting to professional wet cleaning, not CO2, Hydrocarbon, or Green Earth systems. This measure reduces the energy usage of cleaning facilities, while reducing containments to the air. This measure may qualify for additional incentives through your local air quality management district. This estimation tool is applicable only to professional cleaning facilities with a monthly average energy use of less than or equal to 4,000 kWh.

Data inputs for existing and proposed motors include:

- **Average monthly electrical usage (kWh)** - Electric usage for the past 12 months. This can be determined for your monthly electric bills from the past twelve months or by contacting your Electric Utility Service Representative. Facilities with a monthly average energy use of more than 4,000 kWh are not covered under this estimating tool.

- **Average monthly electrical demand (kW)** - Electric usage for the past 12 months. This can be determined for your monthly electric bills from the past twelve months or by contacting your Electric Utility Service Representative.

The calculation model provides the following output:

- **Estimated annual energy savings (kWh)**
- **Estimated demand reduction (kW)**
- **Incentive amount**
2.2.19 Other - Pulse Cooling for Injection Molding Machines

This tool is utilized to estimate savings achieved from the installation of pulse cooling retrofit units for injection molding machines.

Injection molders typically inject molten plastic into a set mold, and release the final plastic product when sufficiently cooled. One conventional process to cool the plastic involves a constant flow chilled water system, which continuously cools the mold. However, this system often results in overcooling the mold at certain times in the molding cycle, which may result in a flawed product. To counteract this overcooling, thermolator units are often in place to cycle hot fluid (either oil or water) through the mold when needed. These thermolator units typically consist of an electric thermolator heater and a circulation pump.

A pulse cooling unit consists of a controller, temperature probes, and water valves. This controller monitors the mold temperature and pulses chilled water to cool the mold only when needed to achieve a uniform product. At other times water flow is terminated, which avoids any overcooling of the mold. As overcooling is eliminated, the thermolator units often can be eliminated. The 2009 software calculates the electricity savings achieved by removing these thermolator units and replacing them with a pulse cooling unit, which consumes a relatively small amount of electricity.

This 2009 software tool assumes the replacement of thermolator heating units with the installation of a pulse cooling unit. For injection molding retrofits which do not match the above scenario description, the engineering calculations approach should be used.

Take special note of the following software inputs:

- **Multiple circulation pumps** - Multiple pumps may be entered together as long as they meet the following conditions:
 - The pumps must be identical in capacity [HP or kW] (different model numbers are OK).
 - If the pumps are serving multiple injection molders, the injection molder operating hours must be identical.

- **Multiple thermolators** - Multiple thermolators may be entered together as long as they meet the following conditions:
 - The thermolators must be identical in capacity [kW] (different models numbers are OK).
 - If the thermolators are serving multiple injection molders, the injection molders must have identical operating hours.
 - The thermolators must have identical operating hours.

- **Input power per thermolator, “Nameplate rating” option** - The input power should be the capacity rating [kW] listed on the nameplate of the thermolator unit. If there is no nameplate rating visible, the rating should be found in the thermolator's manufacturer specifications literature.

- **Input power per thermolator, “Measured with power meter” option** - If power is measured with a meter and the instantaneous power of the thermolator fluctuates, power readings [kW] over an entire injection molding cycle shall be logged. An average of these readings shall be computed and input into this field.

- **Annual hours of operation of thermolators** - This value shall be the number of annual hours the thermolator heating units are in operation. This may differ from the injection molder hours, as thermolators may cycle on only when needed. The annual hours
should be determined by closely monitoring the thermolator operation runtime over a number of injection molding cycles.
2.2.20 Other - Pump-Off Controllers for Oil Wells

This tool estimates savings for the installation of pump-off controllers on sucker rod pumping systems. Pump-off controllers save energy by reducing motor operation. Typically, these wells operate 24 hours per day regardless of their production level. When the wells are operating below capacity, the pump may experience a condition known as fluid pounding. Fluid pounding occurs when an insufficient amount of fluid, water and oil, is drawn into the well sleeve, decreasing the overall pumping efficiency. As a result, air can be drawn into the pump, decreasing the pumping efficiency of the well.

The estimated savings is based on a simplified empirical model, which correlates volumetric efficiency, percentage runtime and percentage energy use. The results may not accurately reflect the performance of an individual well; rather they represent an average performance. Accurate modeling of an individual well requires a more complex simulation model, which is commercially available.

The savings estimation tool requires the user to input a well’s identification number, motor size, production level, annual hours of operation, pump diameter, pump downhole stroke length and pump stroke speed.

- **Number of Wells** - Enter the number of wells.
- **Well Identification Number** - Enter the well’s identification number. This value can be numeric or alphanumeric.
- **Motor Horsepower (hp)** - Enter the rated motor capacity.
- **Average Daily Production (bfpd)** - Enter the average daily production in units of barrels of fluid per day. The estimate should be based on the last twelve months of operation. Include supporting data as an attachment.
- **Annual Hours (hr/yr)** - Enter the estimated annual hours of operation.
- **Pump Diameter (inches)** - Enter the pump diameter. This is the inner diameter of the pump plunger.
- **Stroke Length (inches)** - Enter pump stroke length. This is the downhole stroke length of the pump.
- **Strokes per Minute (spm)** - Enter pump strokes per minute.
2.2.21 Other – Pumping System Upgrades

Pumping systems have been identified as one of the largest end use applications in industrial settings. Under the sponsorship of the DOE Motor Challenge program a computer program called PSAT (Pumping System Assessment Tool) was developed to assist end users in identifying and estimating pumping system energy saving opportunities. These opportunities include pump and/or motor replacement and resizing. This NRR-DR program estimation software utilizes some of the same methodologies as the PSAT tool but incorporates some basic assumptions to simplify its use. Savings associated with installation of variable speed drives (VSD) is also estimated; a measure that is not included in PSAT.

This tool currently estimates savings for the following measures, either singly or in combination:

- Direct replacement of a pump with one of higher efficiency,
- Direct replacement of an electric pump drive motor with one of higher efficiency, and
- Installation of a variable speed drive on the electric pump drive motor.

Currently the software will only accommodate measures involving a single pump. Therefore projects involving multi-pump systems should not use this tool to estimate savings.

2.2.21.1 Pump and Control Types

The pump types and controls accommodated in the estimation tool software parallel those covered in the PSAT software. The exception is that this software will also calculate savings associated with positive displacement pumps while the PSAT software deals exclusively with centrifugal pumps. Table 20-1 summarizes the pump and control options covered by the estimation software.

Table 20-1. Equipment Included in Pump Savings Estimation Software

<table>
<thead>
<tr>
<th>System Type</th>
<th>Pump Type</th>
<th>Control Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrifugal</td>
<td>End Suction Slurry</td>
<td>Throttling, On / Off, Variable Speed Drive*</td>
</tr>
<tr>
<td></td>
<td>End Suction Sewage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>End Suction Stock</td>
<td></td>
</tr>
<tr>
<td></td>
<td>End Suction ANSI/API</td>
<td></td>
</tr>
<tr>
<td></td>
<td>API Double Suction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Double Suction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vertical Turbine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Large End Suction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multi-stage Boiler Feed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Axial Flow</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>Positive Displacement</td>
<td>Recirc./Bypass w/ Constant Pressure, Variable Speed Drive*</td>
</tr>
<tr>
<td>Displacement</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* -- part of energy savings measure only

2.2.21.1 User Data Inputs

The estimation tool software includes a total of eight input screens for entry of system, pump, drive motor, pump control, operating hour and energy efficient measure (EEM) information. User inputs can be divided into four basic categories pumping system, pump/drive description, usage/load profile and EEM selections. The following tables (20.2 -20.4) summarize the various estimation tool user inputs.
Table 20-2. Pump Savings Estimation Tool Inputs – Input Screens 1 thru 3

<table>
<thead>
<tr>
<th>Input Name</th>
<th>Type</th>
<th>Input Sheet</th>
<th>Description / Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site / System:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump System Name</td>
<td>Fill in</td>
<td>1</td>
<td>Identifies pump system involved</td>
</tr>
<tr>
<td>Pump System Type</td>
<td>Pull-down</td>
<td>1</td>
<td>Centrifugal or Positive Displacement</td>
</tr>
<tr>
<td>Fluid Type</td>
<td>Fill in</td>
<td>1</td>
<td>Fluid being pumped (i.e., water, etc.)</td>
</tr>
<tr>
<td>Number of Pumps</td>
<td>Pull-down</td>
<td>1</td>
<td>1 is the only selection</td>
</tr>
<tr>
<td>Fluid Temperature, °F</td>
<td>Fill in</td>
<td>1</td>
<td>Nominal temperature of fluid being pumped</td>
</tr>
<tr>
<td>Fluid Specific Gravity</td>
<td>Fill in</td>
<td>1</td>
<td>Specific gravity of pumped fluid (i.e., water at 60 F equals 1.0)</td>
</tr>
<tr>
<td>System Design Flow, GPM</td>
<td>Fill in</td>
<td>1</td>
<td>Maximum flow through pump(s)</td>
</tr>
<tr>
<td>Total Developed Head (TDH) or Supply Pressure (psig) @ Max Flow, Ft</td>
<td>Fill in</td>
<td>1</td>
<td>Total head at max system flow in Ft, or Supply Pressure (psig) for positive displacement pump applications</td>
</tr>
<tr>
<td>System Static Head, Ft</td>
<td>Fill in</td>
<td>1</td>
<td>System head requirement at 0 flow (centrifugal pump system only)</td>
</tr>
<tr>
<td>Existing Pump Nameplate Data:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump ID</td>
<td>Fill in</td>
<td>2</td>
<td>Pump identifier / inspection purposes</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Fill in</td>
<td>2</td>
<td>Pump manuf. / inspection purposes</td>
</tr>
<tr>
<td>Model</td>
<td>Fill in</td>
<td>2</td>
<td>Pump model / inspection purposes</td>
</tr>
<tr>
<td>Serial Number</td>
<td>Fill in</td>
<td>2</td>
<td>Pump SN / inspection purposes</td>
</tr>
<tr>
<td>Type</td>
<td>Pull-down</td>
<td>2</td>
<td>See Table 3.x1</td>
</tr>
<tr>
<td>Control Type</td>
<td>Pull-down</td>
<td>2</td>
<td>See Table 3.x1</td>
</tr>
<tr>
<td>Number of Stages</td>
<td>Pull-down</td>
<td>2</td>
<td>Number of impellers / used to calculate specific speed (1-8)</td>
</tr>
<tr>
<td>Flow, GPM</td>
<td>Fill in</td>
<td>2</td>
<td>Flow at pump design point</td>
</tr>
<tr>
<td>Total Developed Head (TDH), Ft or, Discharge Pressure, psig</td>
<td>Fill in</td>
<td>2</td>
<td>Pump TDH at design flow (centrifugal) or, Pump Discharge Pressure (pos. displ.)</td>
</tr>
<tr>
<td>Efficiency, %</td>
<td>Fill in</td>
<td>2</td>
<td>Pump efficiency at design flow</td>
</tr>
<tr>
<td>Existing Drive Motor Nameplate Data:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Fill in</td>
<td>3</td>
<td>Motor manuf. / nameplate data</td>
</tr>
<tr>
<td>Model</td>
<td>Fill in</td>
<td>3</td>
<td>Motor model / nameplate data</td>
</tr>
<tr>
<td>Size, HP</td>
<td>Fill in</td>
<td>3</td>
<td>Motor size / nameplate data</td>
</tr>
<tr>
<td>Speed, RPM</td>
<td>Pull-down</td>
<td>3</td>
<td>Motor rotating speed / nameplate data</td>
</tr>
<tr>
<td>Enclosure Type</td>
<td>Pull-down</td>
<td>3</td>
<td>ODP or TEFC/TXPL</td>
</tr>
<tr>
<td>Service Rating</td>
<td>Pull-down</td>
<td>3</td>
<td>Motor service rating; 1.15 or 1.25</td>
</tr>
<tr>
<td>NEMA Nominal Efficiency (full load)</td>
<td>Fill in</td>
<td>3</td>
<td>EPACT min value is displayed for comparison purposes</td>
</tr>
</tbody>
</table>
Table 20-3. Pump Savings Estimation Tool Inputs – Input Screens 4 & 5

<table>
<thead>
<tr>
<th>Input Name</th>
<th>Type</th>
<th>Input Sheet</th>
<th>Description/Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump Operating Information:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Operating Modes</td>
<td>Pull-down</td>
<td>4</td>
<td>Number of different flow points that will be entered</td>
</tr>
<tr>
<td>Operating Hour Input</td>
<td>Pull-down</td>
<td>4</td>
<td>Yearly (total annual hours as input) or Daily (days/month as input) may be selected</td>
</tr>
<tr>
<td>Operating Mode Information:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Mode Number</td>
<td>Pull-down</td>
<td>4</td>
<td>Selections are 1 through the number of different operating modes entered above.</td>
</tr>
<tr>
<td>Description</td>
<td>Fill in</td>
<td>4</td>
<td>Name or description of operating mode (flow point) selected above (i.e., irrigating north fields, etc.)</td>
</tr>
<tr>
<td>On-Peak Operation?</td>
<td>Checkbox</td>
<td>4</td>
<td>Check this box if any pump operation during this operating mode occurs during the PG&E on-peak period.</td>
</tr>
<tr>
<td>Average Flow Rate, GPM</td>
<td>Fill in</td>
<td>4</td>
<td>Pump flow rate during this operating mode</td>
</tr>
<tr>
<td>Pump Operating Information:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Operating Hours</td>
<td>Fill in</td>
<td>5</td>
<td>Total annual operating hours for each operating mode. This field is only an input if the Operating Hour Input (sheet 4) selection was “Yearly”</td>
</tr>
<tr>
<td>Day per Month</td>
<td>Fill in</td>
<td>5</td>
<td>Table appears if “Daily” Operating Hour Input (sheet 4) was selected. Enter the number of days of operation for each operating mode for each month.</td>
</tr>
<tr>
<td>Hours per Day</td>
<td>Fill in</td>
<td>5</td>
<td>Table appears if “Daily” Operating Hour Input (sheet 4) was selected. Enter the number of hours of operation for each operating mode for each month.</td>
</tr>
</tbody>
</table>
Table 20-4. Pump Savings Estimation Tool Inputs – Input Screens 6 thru 8

<table>
<thead>
<tr>
<th>Input Name</th>
<th>Type</th>
<th>Input Sheet</th>
<th>Description/Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure Specification:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump Replacement/Modification</td>
<td>Checkbox</td>
<td>6</td>
<td>Check this box if the pump or pump drive motor will be replaced</td>
</tr>
<tr>
<td>Pump Replacement/Modification</td>
<td>Pull-down</td>
<td>6</td>
<td>Select from this pull-down if the Pump Replacement/Modification checkbox was selected. Selections include Motor Only, Pump Only, Pump and Motor</td>
</tr>
<tr>
<td>Variable Speed Drive (VSD) Installation</td>
<td>Checkbox</td>
<td>6</td>
<td>Check this box if a variable speed drive will be installed.</td>
</tr>
<tr>
<td>Full Load Efficiency, %</td>
<td>Fill in</td>
<td>6</td>
<td>VSD efficiency at full load, 100% speed</td>
</tr>
<tr>
<td>Minimum Operating Speed, %</td>
<td>Fill in</td>
<td>6</td>
<td>VSD minimum operating speed</td>
</tr>
<tr>
<td>Proposed Pump Data:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Same inputs as existing pump</td>
<td>--</td>
<td>7</td>
<td>(see sheet 2)</td>
</tr>
<tr>
<td>Drive Motor Nameplate Data:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Same inputs as existing motor</td>
<td>--</td>
<td>8</td>
<td>(see sheet 3)</td>
</tr>
</tbody>
</table>

2.2.21.2 Basis for Energy Savings

As with any efficiency measure the estimated savings is the difference between the baseline and proposed energy usage. In the case of pump related measures the calculations can be divided into two basic types; those dealing with positive displacement pumps (i.e., rotary, screw, lobe, vane and reciprocating) and those dealing with dynamic pumps (i.e., centrifugal, mixed flow and axial).

2.2.21.2.1 Baseline Energy Use -- Positive Displacement Pumps

The electric demand of a positive displacement pump is calculated using the following expression.

\[
kW_{PUMP} = 0.7457 \times \frac{Q_D \times P_D}{1714 \times \eta_p \times \eta_e}
\]

(Equation 20-A)

where:
- \(Q_D\) = Pump design flow (gpm)
- \(P_D\) = Pump discharge pressure (psig)
- \(\eta_p\) = Pump design efficiency
- \(\eta_e\) = Drive motor efficiency

Note that pump discharge pressure has been substituted for pump total developed pressure under the assumption that pump suction pressure will be very small relative to discharge pressure.
We assume that the baseline positive displacement pump is operating with a recirculating type control that provides for a constant pump flow and discharge pressure when driven by an electric motor without a variable speed capability. This is to say that while the system flow may vary for each of the operating modes, the pump flow and associated power will remain constant (as excess pump capacity is recirculated back to the pump suction). Likewise, pump efficiency is assumed to be equal to the design values regardless of system flow. The estimation software uses existing software functions (based on DOE MotorMaster) to estimate the electric motor efficiency (based on motor load).

Baseline energy use is calculated as the product of the total operating hours and the pump electric demand with total operating hours equal to the sum of the operating hours for each of the system operating modes.

2.2.21.2.2 Baseline Energy Use – Dynamic Pumps

The electric demand of a dynamic pump such as a centrifugal or axial flow pump is calculated using the following expression.

\[kW_{PUMP} = 0.7457 \times \frac{S \times Q \times H}{3960 \times \eta_p \times \eta_e} \]
(Equation 20.B)

where:
- \(S \) = specific gravity of pumped fluid relative to water at 60F
- \(Q \) = fluid flow (gpm)
- \(H \) = Total developed head (Ft)
- \(\eta_p \) = Pump efficiency
- \(\eta_e \) = Drive motor efficiency

The specific gravity term in this expression, \(S \), is considered constant and is based on the type and temperature of the pumped fluid. With the exception of pump flow, \(Q \), the remaining terms will vary based on pump flow. Therefore this expression must be evaluated separately for each individual operating mode.

Estimating Dynamic Pump Performance

As noted previously, dynamic pump head and efficiency vary depending on pump flow and must be evaluated at each operating point. The total developed head and efficiency of a dynamic pump are typically characterized in a pump performance curve. These curves are generated by the pump manufacturer and are used to determine the pump operating point (head and efficiency) under varying flows. Since these curves can be difficult to locate for older pumps the estimation tool software assumes that pump performance will follow one of three generic pump curves. Curve selection is based on pump specific speed where pump specific speed is calculated using the following expression:

\[Ns = \frac{RPM \times \sqrt{Q}}{(H / NS)^{3/4}} \]
(Equation 20.C)

where:
- \(NS \) = number of pump stages
- \(Q \) = pump design flow (gpm)
- \(H \) = Total developed head (Ft)
- \(RPM \) = Drive motor speed, rpm
Pumps with a specific speed in the range of 300 - 4,999 are assumed to follow a radial pump curve (Figure 20.1) while pumps with a specific speed in the 5,000 – 9,999 range are assumed to follow the mixed flow pump curve (Figure 20.2). Pumps with a specific speed equal to or exceeding 10,000 are assumed to follow the axial pump curve (Figure 20.3).

![Generic Dynamic Pump Curves (Radial)](image)

Figure 20.1. Generic Dynamic Pump Curves (Radial)

*(normalized based on flow, head and efficiency at the Best Efficiency Point (BEP))
Figure 20.2. Generic Dynamic Pump Curves (Mixed Flow)
(normalized based on flow, head and efficiency at the Best Efficiency Point (BEP))
Figure 20.3. Generic Dynamic Pump Curves (Axial)
(normalized based on flow, head and efficiency at the Best Efficiency Point (BEP))

Note that these pump performance curves are normalized based on pump design data. Normalizing the curves allows their use in estimating the performance of any dynamic pump as long as the pump design information (flow, head and efficiency) is provided by the user. It is important to note that actual pump performance may vary from the generic curve profile. Therefore, if the user has access to the manufacturer’s pump curve information the user should use this information, either directly to estimate pump performance, or should compare the manufacturer’s information against the generic curve to confirm that the estimation software is providing a reasonable estimate of pump performance.

Matching System and Pump Performance
In order to estimate the baseline energy use of a dynamic pump it is first necessary to locate where the pump is operating on its characteristic performance curve. In the case of a throttling type of control a control valve located on the pump discharge will increase or decrease the system loss causing the pump flow to decrease or increase until the pump flow matches the system requirement. For throttling type controls the pump flow is therefore equal to the system flow and the pump performance parameters are calculated using the previously discussed generic performance curves and the system flow value.

For On/Off type controls there is no control valve on the discharge and the pump flow will therefore only be limited by the system losses. This limitation is represented by the intersection of the system loss and pump performance curves. For On/Off controls the estimation software must therefore locate this intersection. An example of this intersection is illustrated in Figure 20.4 below (using a radial pump curve).
The software uses the site/system information provided by the user (max system flow, max and static head) to generate the estimated system loss curve. The intersection is then located and the pump efficiency is estimated using the generic pump performance curves discussed earlier. Once the pump efficiency (for either On/Off or Throttling control types) is determined it is then possible to estimate the electric motor loading and efficiency using existing Statewide Customized Offering software functions (based on DOE MotorMaster). The resulting pump and electric motor efficiencies are then used in conjunction with Equation 20.B to estimate the pump kW for the specified operating mode. Baseline energy use for the operating mode is the product of the pump kW and the total annual operating hours that have been entered for the operating mode.

The estimation software repeats the process of locating the pump operating point, estimating pump and motor efficiency and calculating the baseline energy usage for each of the operating modes (up to eight) specified by the user.

Note that in the event that the software is unable to locate the estimated pump operating point (intersection of pump and system operating curves) or the estimated operating point is deemed invalid (flow is negative or exceeds system maximum flow) it will cause the calculation to be aborted and an error window will appear. The window will indicate that the specified pump appears incompatible with system requirements. This condition must be corrected (i.e. different pump or system specifications, etc.) before the calculations can be completed.

2.2.21.2.3 Efficiency Measure – Pump Replacement

The estimation software calculates the savings associated with replacement of an existing pump with a pump having a higher efficiency. The energy use of the new pump is calculated in the same manner as previously described for baseline energy use. The exception being that the new pump efficiency information is either directly substituted for the existing pump efficiency in equation 20.A (positive displacement pumps) or is used to generate a pump performance curve (dynamic pumps), which in turn allows a pump operating point and efficiency value to be estimated for the new pump.
2.2.21.2.4 Efficiency Measure – Drive Motor Replacement

The estimation software calculates the savings associated with replacement of an existing pump drive motor with a motor having a higher efficiency. The energy use of the new motor is calculated in the same manner as previously described for baseline energy use. The exception being that the new motor efficiency is substituted for the existing motor efficiency in either equation 20.A (positive displacement pumps) or equation 20.B (dynamic pumps) depending on the pump type.

2.2.21.2.5 Efficiency Measure – Variable Speed Drive (VSD) Installation

Variable speed drives can achieve significant energy savings in pumping applications. Savings vary significantly depending on pump type and the estimation software therefore calculates the estimated savings associated with VSD operation differently depending on pump type.

VSD Measure -- Positive Displacement Pumps

The electric demand of positive displacement pumps when operating under VSD control is calculated using the following expression.

\[kW_{\text{PUMP}} = 0.7457 \times \frac{Q \times P_D}{1714 \times \eta_p \times \eta_e \times \eta_{\text{VSD}}} \]
(Equation 20.D)

where:
- \(Q \) = fluid flow (gpm) @ operating mode
- \(P_D \) = Pump discharge pressure (psig)
- \(\eta_p \) = Pump efficiency
- \(\eta_e \) = Drive motor efficiency
- \(\eta_{\text{VSD}} \) = VSD efficiency

The baseline energy calculation for positive displacement pumps assumed constant pump flow regardless of the operating mode. Under VSD control, pump flow will match system flow and the flow value in the above expression is therefore equal to the operating mode flow specified by the user. Pump discharge pressure and pump efficiency are both assumed to be constant and equal to the pump design values (consistent with baseline calculation). The estimation software uses existing Statewide Customized Offering software functions (based on DOE MotorMaster) to estimate the electric motor efficiency (based on motor load).

For positive displacement pumps the VSD speed (fraction of full speed) can be estimated as the ratio of the operating mode flow divided by the pump’s rated flow capacity. The software uses this value along with the full load VSD efficiency (user input) to estimate VSD efficiency. The relationship between VSD speed and efficiency utilized by the software is illustrated in Figure 20.5.

Note that the software checks the estimated VSD operating speed against the minimum speed entered by the user on input sheet 6. If the estimated operating speed is less than the stated minimum the calculation will be aborted and an error window will appear indicating that “Operating Mode X requires VSD operation below its minimum allowable range.” The software will abort the calculations and return to the previous screen. The savings calculation cannot therefore be completed if one of the operation modes violates the minimum speed limit for the VSD.
Once the VSD efficiency has been calculated it is then possible to calculate the electric demand of the VSD equipped pump using Equation 20.D. The difference between the previously calculated baseline electric demand and the proposed demand represents the average demand savings for this operating mode. The energy savings are calculated as the product of the average demand savings and the operating hours for the operating mode. The software repeats this process for each of the operating modes specified by the user.

VSD Measure – Dynamic Pumps

The electric demand of a dynamic pump when operating under VSD control is calculated using the same basic expression as the baseline dynamic pump calculation with the exception that a VSD efficiency term is included.

\[
\text{kW}_{\text{PUMP}} = 0.7457 \times \frac{S \times Q \times H}{5310 \times \eta_p \times \eta_e \times \eta_{VSD}} \]

(Equation 20.E)

where:
- \(S\) = specific gravity of pumped fluid relative to water at 60F
- \(Q\) = fluid flow (gpm)
- \(H\) = Total developed head (Ft) at this operating mode point
- \(\eta_p\) = Pump efficiency
- \(\eta_e\) = Drive motor efficiency
- \(\eta_{VSD}\) = VSD efficiency

However since dynamic pump performance varies with pump speed it not possible to assume constant pump efficiency or constant pump discharge pressure. Furthermore, it is not possible to calculate these performance parameters until the operating speed of the pump is calculated.

Estimating VSD Operating Speed -- Dynamic Pumps

The pump affinity laws state that with a constant impeller diameter and varying pump speed the following ratios are maintained without any change to pump efficiency.

\[
\frac{Q_1}{Q_2} = \frac{n_1}{n_2} \quad \text{(Equation 20.F)}
\]

\[
\frac{H_1}{H_2} = \left(\frac{n_1}{n_2}\right)^2 = \left(\frac{Q_1}{Q_2}\right)^2 \quad \text{(Equation 20.G)}
\]

where:

- \(Q\) = Pump fluid flow (gpm)
- \(H\) = Pump total developed head (Ft)
- \(n\) = Pump speed (RPM)

In our case we set \(H_2\) and \(Q_2\) equal to the system loss \((H_{OP\text{Mode}})\) and system flow at the specified operating point \((Q_{OP\text{Mode}})\), respectively while \(H_1\) and \(Q_1\) represent the head and flow of the existing pump when operating at the same efficiency. Substituting and solving for \(H_1\) yields:

\[
H_1 = H_{OP\text{Mode}} \left(\frac{Q_1}{Q_{OP\text{Mode}}}\right)^2 \quad \text{(Equation 20.H)}
\]

To calculate the intermediate flow term \((Q_1)\) we equate the above expression to the expression representing the existing pump head curve (polynomial expression based on generic curve shape) and solve for the pump flow \((Q_1)\). Having solved for \(Q_1\) the affinity laws are used to estimate the VSD operating speed \((n_{VSD})\):

\[
n_{VSD} = n_{\text{Motor}} \frac{Q_{OP\text{Mode}}}{Q_1} \quad \text{(Equation 20.I)}
\]

Pump efficiency at this operating point is calculated using the existing pump efficiency curve (generic curve, as before) at the intermediate flow, \(Q_1\). The remaining terms, VSD and electric motor efficiency are calculated in the same manner as previously described for the positive displacement pump case. Once these terms have been calculated it is then possible to calculate the electric demand of the VSD equipped pump using Equation 20.E. The difference between the previously calculated baseline electric demand and the proposed electric demand represents the average demand savings for this operating mode. The energy savings are calculated as the product of the average demand savings and the operating hours for the operating mode. The software repeats this process for each of the operating modes specified by the user.

Note that the software checks the estimated VSD operating speed against the minimum speed entered by the user on input sheet 6. If the estimated operating speed is less than the stated minimum the calculation will be aborted and an error window will appear indicating that “Operating Mode X requires VSD operation below its minimum allowable range.” The software will abort the calculations and return to the previous screen. The savings calculation cannot therefore be completed if one of the operation modes violates the minimum speed limit for the VSD.
2.2.22 Other - Refrigerated Wine Tank Insulation

This tool estimates tank insulation savings. Use of this model is geared towards, but not limited to, winery storage tanks. The assumed tank geometry is a vertical cylinder. Use of this tool for other tank insulation projects will be reviewed by the program administrators.

General Information:

- **Number of Tank Types** - Enter the number of tank types. Each type will define tank dimensions, location, existing and proposed insulation specifications, refrigeration system specifications, temperature settings and usage profiles.
- **Tank Description** – Describe the type of tank to be retrofit with new or improved insulation.

To edit the tank characteristics, highlight the line item of interest and select “Edit Tank Details”.

Tank Characteristics:

- **Number of Tanks** - Enter the number of tanks. All tanks must have the same dimensions, location, existing and proposed insulation specifications, refrigeration system specifications, temperature settings and usage profiles.
- **Tank Material** - Select tank material. The default is Stainless Steel 304.
- **Tank Thickness** - Specify tank thickness. The default is 12-gauge, or 0.105 inches.
- **Tank Color** – Select the shade that best describes the tank color: light, medium or dark.
- **Tank Dimensions (ft)** - Enter tank dimensions: height, diameter and exterior cooling jacket width.
- **City** - Select a city.
- **Location** – Selection the tank location: outside, inside (unconditioned space) or inside (conditioned space). If the tanks are located in a conditioned space the user needs to input the monthly temperature set points.
- **Refrigeration System Efficiency** - Enter the rated efficiency of the refrigeration system in terms of kW/ton. The rated efficiency should be based on design conditions at entering ambient air temperatures of 95°F dry-bulb for air-cooled condensers and 75°F wet-bulb for evaporative-cooled condensers, and 85°F entering water temperature for water-cooled condensers.
- **Condenser Type** – Selection the refrigeration system condenser type: air-cooled, water-cooled, or evaporative-cooled.
- **Controls** – Select the refrigeration controls: fixed or floating head.
- **Insulation Specifications** - Enter insulation parameters of thermal resistance (h·ft²·°F/Btu·in) and thickness (in), existing (if applicable) and proposed.

Operating Characteristics:

- **Conditioned Space Temperature (°F)** – If the tanks are located in a conditioned space, the user needs to estimate and input the average monthly space temperatures; otherwise, the model uses typical weather data.
- **Glycol/Water Temperature (°F)** - Enter the monthly refrigerant temperature (°F) set point. This is the temperature set point of the refrigeration system. The default value is 33°F. If the user assumes a set point temperature below the default value for more than
one month, allowing for one month of cold stabilization, supporting documentation will be required.

- **Tank Temperature (°F)** - Enter the average monthly tank temperature (°F) set point. The default value is 50°F. If the user assumes a set point temperature below the default value for more than one month, allowing for one month of cold stabilization, supporting documentation will be required.

- **Days per Month** - Enter days of operation per month. The default value is 24 days per month, which is based on a tank utilization rate of 80%. If the user assumes greater tank utilization per month, supporting documentation will be required.
2.2.23 Other - Tape Drip Irrigation
The tape drip irrigation measure saves energy by increasing irrigation efficiency and reducing pressure head. Tape drip refers to thin walled hoses ranging from 4 to 20 millimeters. Other types of drip irrigation are eligible as Itemized (Express Efficiency) Measures.

The methodology for estimating energy savings form crop irrigation focuses on changes to irrigation and pumping efficiencies, and irrigation requirements. The amount of irrigation required depends on local weather conditions, crop type and soil type. For analysis purposes, it is assumed that there is a single pumping plant supplying water to a site irrigation system. This provides a simple conceptual basis for calculating energy savings.

The input variables and equations are relatively straight forward, except for the determination of the required irrigation, which is a function of crop evapotranspiration (ET\text{c}) and effective precipitation (PPT_{eff}). This model is based on monthly averages of evapotranspiration and precipitation, with a simplified determination of effective precipitation.

Site specific information:

- **Manufacturer** - Enter tape drip manufacturer.
- **Name** - Enter tape drip name.
- **Model** - Enter tape drip model number.
- **ET\text{c} Zone** - Select an appropriate evapotranspiration zone. There are 18 evapotranspiration zones in California. See the evapotranspiration reference map developed by the California Department of Water Resource (http://www.cimis.water.ca.gov/cimis/images/etomap.jpg).
- **Average Pumping Depth (ft)** - Enter the average pumping depth for the site. Pumping depth is the sum of the well water depth and well drawdown.
- **Average Pumping Lift (ft)** - Enter the average elevation the water needs to be lifted prior to irrigation.
- **Average Water Main Length (ft)** - Enter the average distance of the water main. This is the distance from the pump to the submain.
- **Average Well Flow (gpm)** - Enter average well pump flow rate.
- **Average Water Main Diameter (inches)** - Enter the average diameter of main water line.
- **Sprinkler Pressure Head (psi)** - Enter the sprinkler pressure head. This should be consistent with equipment specifications and operating conditions.

Crop specific information:

- **Crop Type** - Select crop type: row crop, or tree and vine.
- **Crop Name** - Select crop name.
- **Crop Area (acres/crop)** - Enter the crop area.
- **Crop Planting Dates (month/day)** - Enter the date planting begins for row crop, or date leaf out begins for tree and vine.
- **Crop Harvest Dates (month/day)** - Enter the date harvest begins.
- **Soil Type** - Select the soil type for each crop. There are four types of soil to select from: coarse sand, fine sand, loam and heavy clay.
• **Crop Irrigation Method for Each Phase** - Enter the irrigation method during each phase of growth. For row crops, there are four phases of growth (A-B = “initial”, B-C = “rapid”, C-D = “mid-season”, and D-E = “late-season”). For tree and vine crops, there are three phase of growth (B-C = “rapid”, C-D = “mid-season”, and D-E = “late-season”).
2.2.24 Other - Variable-Speed Drives for Cooling Tower Fan Motors

This tool is utilized to estimate savings achieved from the installation of variable speed drives on cooling tower fan motors.

The 2010 Statewide Customized Offering software calculates savings using the Engage Software for a measure of this type. The Engage software is a stand-alone, DOE2 based modeling program. If you believe the simulation does not fairly represent the project’s savings, use the engineering calculations approach to estimate the energy savings.

For cooling and heating units not covered by this estimating tool, you will have to use the Engineering Calculations approach to determine the energy savings.

This tool has four input screens. The following inputs should be noted:

- **Building Location** - From the pull-down menu, select a city that best represents the building location; this will, in turn, automatically select a weather zone or select the weather zone directly from the pull down menu.

- **Building Type** - Select a “predefined” building configuration from the list of “prototypical” buildings (see Appendix D for detailed descriptions). If one of the predefined building types is a fair representation of your project site, you can simply input the building location, square footage of conditioned space, and building operating hours.

- **Vintage** – Select the vintage of the building.

- **Building Area** – Enter the total building area.

- **HVAC System Type** – Select a “predefined” HVAC system type from the drop down list. Choices change depending on building type selected.

- **Building Seasons** – Sheet 2 and Sheet 3 are used to input the operating schedule of the building.
 - **Sheet 2** – The user has the ability to define up to three seasons.
 - **Sheet 3** – The user may select the appropriate building shell and define the hourly schedule of each season.

Cooling tower specification inputs (Sheet 4):

- **Fan Motors** - Enter motor count and motor horsepower for up to twenty (20) different motor horsepower.

- **Baseline Temperature Control**- Select either “Fixed” or “Reset” and enter the set points for the control type.
 - **Fixed** – The condenser entering (i.e., tower leaving) temperature is controlled to a fixed value, specified by the Setpoint input.
 - **Reset** – The condenser entering (i.e., tower leaving) temperature is allowed to float with the chiller heat rejection load and wet-bulb temperature. The minimum tower leaving temperature is specified by the Min Temperature input.

- **Baseline Cooling Tower Fan Capacity Control** - Select the existing capacity control cooling tower fans from the pull down menu.

- **Proposed Temperature Control**- Select either “Fixed” or “Reset” and enter the set points for the control type.
 - **Fixed** – The condenser entering (i.e., tower leaving) temperature is controlled to a fixed value, specified by the Setpoint input.
Reset – The condenser entering (i.e., tower leaving) temperature is allowed to float with the chiller heat rejection load and wet-bulb temperature. The minimum tower leaving temperature is specified by the Min Temperature input.

- Proposed Cooling Tower Fan Capacity Control - Select the existing capacity control cooling tower fans from the pull down menu.

- Savings Estimate - The estimated savings are reported on the fifth screen of this tool.
2.2.25 Other - Variable-Speed Drives for Dairy Vacuum Pump

This tool estimates the potential annual electrical energy savings and peak demand reduction that can be achieved by adding a variable-speed drive (VSD) to a standard dairy vacuum milking system. The program contains efficiency tables for standard- and premium-efficiency motors. Savings estimates are based on the following assumptions:

- The existing standard dairy milking vacuum pump system is significantly oversized and runs at a constant speed. Piping changes are made to move the vacuum system regulator (or controller), increase the vacuum system efficiency, and replace and downsize the main vacuum pump.
- The new, smaller vacuum pump motor is controlled by a VSD, which in turn receives feedback from the vacuum system through a pressure transducer. Any additional vacuum pumps and motors are either removed from service or replaced with premium-efficiency models.
- All motors are three phase, 1800 RPM, and operating at 90% load.

2.2.25.1 Energy Calculations

This tool estimates existing energy usage using the nameplate horsepower of the vacuum pump motors and the average number of hours the system operates every day.

The annual energy usage is determined as follows:

\[\text{Energy Usage (kWh)} = \text{Demand} \times \text{Average Daily Operating Hours} \times 365 \text{ days/year} \]

When a VSD is installed to control a motor, the total energy savings depends on how the load changes over time and the amount of time spent at each load level. Testing at several dairies retrofitted with a VSD to control a downsized vacuum pump motor recorded savings close to half of the expected energy usage for the new system. This estimating tool uses a VSD motor speed and operating time distribution that yields an average annual energy savings of 46.3%. However, the peak demand for the combination of the new motor and a VSD is assumed to be 5% greater than for the new motor alone, due to the energy draw of the VSD controller itself.

2.2.25.2 Demand Calculations

The software estimates the existing electrical demand and energy usage using the nameplate horsepower of the vacuum pump motors and the average number of hours the system operates every day. Survey data indicate that most dairy vacuum pump motors run close to 90% load. Thus, the electrical demand of each vacuum pump motor is calculated as follows:

\[\text{Demand (kW)} = \frac{[\text{Motor Horsepower (HP)} \times 0.746 \times 90\%]}{\text{Motor Efficiency (\%)}}, \]

where 0.746 is the factor used to convert HP to kW, and Motor Efficiency is a value dependent on motor type and load.

2.2.25.3 EPAct Savings

The estimated savings calculated by the program exceed the requirements of the national Energy Policy Act (EPAct) of 1992, and are therefore reportable. The software incorporates EPAct motor efficiency requirements to determine the amount of motor replacement energy savings that exceed the 1992 EPAct requirements and qualify for energy efficiency incentives.
2.2.26 Other - Variable-Speed Drives for HVAC Fans > 100 HP

This tool addresses variable-speed drives (VSDs) on HVAC supply-air fans greater than 100 horsepower. A number of assumptions (stipulations) were made in order to simplify the savings calculations for this common measure:

- The fan is assumed to be on continuously during the building’s operating hours. The tool does not cover intermittent fan operation.
- Fan speed is assumed to follow the cooling load but is not allowed to drop below 25% of rated speed. During heating, the fan speed is assumed to always be 100%.
- No cooling or heating, and therefore no fan operation, is allowed during the unoccupied period.

The 2009 software calculates savings using the DOE2 hourly energy simulation method. If you believe the simulation does not fairly represent the project’s savings, use the engineering calculations approach to estimate the energy savings.

Take special note of the following:

- **Multiple Units** - Multiple supply fans may be combined under a single measure if the value entered represents the sum of all supply-air fans with their associated new VSDs. Note that only one drive manufacturer may be entered per measure and the model of the drives (when multiple drives are involved) must be of similar type and applied to fan motors with identical motor efficiency. If capacity is combined, an explanation of fans and motors involved should be included with the backup materials.

- **Building Type** - Select a “predefined” building configuration from the list of “prototypical” buildings (see Appendix D for detailed descriptions) or define a new building type using the custom building type option. If one of the predefined building types is a fair representation of your project site, you can simply input the building location, square footage of conditioned space, and building operating hours.

If you choose the custom building option the software will instruct you on how to initiate the Engage software. The Engage software is a stand-alone, DOE2 based modeling program.

Note that the custom building option must be used if a VSD-modified supply-air fan is used to cool/heat only a portion of a building.

- **Building Location** - From the pull-down menu, select a city that best represents the building location; this will, in turn, automatically select a weather zone. (This program uses the California Energy Commission’s CTZ weather data, which breaks up the state into 17 weather zones.)
2.2.26 Other - Variable-Speed Drives for Process Applications
This tool covers the installation of variable-speed drives (VSDs) for process applications. It includes direct drives (mixers and agitators) and fans. The existing controls for fans can be inlet guide vanes, outlet dampers, or no controls.

Data inputs for existing and proposed motors include:

- **General data** - such as the quantity, location (e.g., 2nd floor) and function (e.g., drive for conveyor belt).

- **Nameplate data** - If the measure includes more than one motor, then all the motors must be of equal size and have equal nameplate ratings. Copies of manufacturer’s specifications that support the proposed motor/drive nameplate values must be submitted to the Utility Administrator with the Project Application.

- **Operational hours** - i.e., the hours that each motor is actually running. If two or more motors being replaced have unequal hours of operation, then these should be treated separately.

- **Existing motor power measurements** - These are critical for establishing brake horsepower (BHP, motor load). The preferred method is to measure power in kW, using a true RMS power meter. Next best would be to measure voltage, current, and power factor with a true RMS meter. At a minimum, both the voltage and current must be measured. If the power factor is not measured, the software will estimate a power factor. Ensure that all voltages are measured line-to-line with measurements taken under normal full-load motor operating conditions.
2.2.27 Other - Wastewater Retrocommissioning
This tool estimates savings for four different energy efficiency measures common to wastewater treatment facilities. The measures are (1) aeration device replacement, (2) control improvements, (3) increased blower efficiency, and (4) increased pumping efficiency.

2.2.27.1 Aeration Device Replacement
Activated sludge plants typically account for 45-60% of the energy consumed at a conventional municipal wastewater treatment facility. Aeration methods include waterfall aerators diffused-gas aerators, and mechanical aerator. For each method there are a number of different aeration devices. An aerator’s performance is defined by the energy required to deliver dissolved oxygen (DO) and the effectiveness of treating the biological oxygen demand (BOD).

- **Existing Aeration Device** - Select existing aeration device.
- **Proposed Aeration Device** - Select proposed aeration device.
- **Average Daily Flowrate (mgd)** - Enter the average daily flowrate in units of millions of gallons per day. The estimate should be based on the last twelve months of operation. Include supporting data as an attachment.
- **Average Daily Biological Oxygen Demand of Influent (mg/L)** - Enter the average BOD entering the aeration zone in units of milligram per liter. The estimate should be based on the last twelve months of operation. Include supporting data as an attachment.
- **Average Daily Biological Oxygen Demand of Effluent (mg/L)** - Enter the average BOD leaving the aeration zone in units of milligram per liter. The estimate should be based on the last twelve months of operation. Include supporting data as an attachment.

2.2.27.2 Aeration Controls
This control measure saves energy by reducing overall aeration. The objective of automation is to more consistently control the DO level regardless of fluctuations in the BOD load. For example, DO sensors can be used to adjust air flow, tank level or mechanical aerator speed. Small treatment systems with no control can be operating at dissolved oxygen rate of 4-5 mg/L. Ideal control levels are 1-2 mg/L.

- **Aeration Device** - Select aeration device. If this measure is being installed in conjunction with an Aeration Device Replacement, this should be the proposed aeration device.
- **Average Daily Flowrate (mgd)** - Enter the average daily flowrate in units of millions of gallons per day. The estimate should be based on the last twelve months of operation. Include supporting data as an attachment.
- **Existing Controls** - Describe existing controls.
- **Existing Average Daily Dissolved Oxygen Levels (mg/L)** - Enter the average dissolved oxygen level prior to the installation of aeration control improvements. The estimate should be based on the last twelve months of operation. Include supporting data as an attachment.
- **Proposed Controls** - Describe proposed controls. Include equipment specifications.
- **Proposed Average Daily Dissolved Oxygen Levels (mg/L)** - Enter the average dissolved oxygen level after the installation of aeration control improvements.
2.2.27.3 **Blower Efficiency Improvements**
This measure can save energy by increasing blower efficiency. Efficiency can be improved by installing a more efficient motor and blower, impeller rightsizing, blower downsizing and improved air flow control. If the measure is motor replacement only, than the appropriate measure category is High-Efficiency Motor Replacement or Early Retirement. See Section 2.2.16.

- **Annual Hours (hr/yr)** - Enter the estimated annual hours of operation.
- **Mass Flowrate (lb/s)** - Enter the average mass flowrate. If this measure is being installed in conjunction with an Aeration Device Replacement and/or Aeration Control, this should be the post-installation mass flowrate.
- **Absolute Inlet Temperature (°R = 460 + °F)** - Enter the absolute inlet temperature.
- **Blower Efficiency (%)** - Enter the blower efficiency (pre- and post-installation).
- **Motor efficiency (%)** - Enter the rated motor efficiency (pre- and post-installation).
- **Absolute Inlet Pressure (lb/ft²)** - Enter the absolute inlet pressure.
- **Absolute Outlet Pressure (lb/ft²)** - Enter the absolute outlet pressure (pre- and post-installation).

2.2.27.4 **Pumping Efficiency Improvements**
This measure can save energy by increasing pumping efficiency. Efficiency can be improved by installing a more efficient motor and pump, impeller rightsizing, pump downsizing and improved flow control. If the measure is motor replacement only, than the appropriate measure category is High-Efficiency Motor Replacement or Early Retirement. See Section 2.2.17.

- **Annual Hours (hr/yr)** - Enter the estimated annual hours of operation.
- **Average Flowrate (gpm)** - Enter the average flowrate in units of gallons per minute. The estimate should be based on the last twelve months of operation. Include supporting documentation as an attachment.
- **System Head (ft)** - Enter the system head.
- **Fluid Specific Gravity (dimensionless)** - Enter the specific gravity. The specific gravity of a substance is a comparison of its density to that of water. The default value is 1.0.
- **Pump Efficiency (%)** - Enter the pumping efficiency (pre- and post-installation).
- **Motor Efficiency (%)** - Enter the rated motor efficiency (pre- and post-installation).
2.3 Customized Measures - Engineering Calculations

If you cannot find an existing program savings calculation method that adequately represents your measure you can choose to submit your own savings estimate (Engineering Calculations). The purpose of this section is to provide basic guidelines in preparing your savings estimate that will help ensure a timely and successful review by the Utility Administrator. An engineering calculation worksheet is available (see Appendix E) to assist in the documentation process.

Preparation Basics

When preparing your application assume that the reviewer, while having a technical background, will not have direct knowledge of your specific project. Therefore, the description(s) that you provide should contain sufficient detail to clearly understand the processes involved, the proposed savings measure, and how the measure will achieve the stated savings. To facilitate the review process, please consider the following:

- Break up your calculations and associated descriptions into smaller steps, since this will make your thought process easier to follow,
- Fully describe how you obtained any data used in the calculations (i.e., equipment load, operating hours, etc.),
- Fully describe any simulations/software used,
- Attach (and be able to electronically submit) printouts/reports summarizing both the inputs and results of simulations or other software used in preparing the calculation(s), and
- Attach any manufacturer’s data, production data and/or other documentation that supports the inputs and assumptions used in your calculations or descriptions. Note that spot measurements of load, whether in kW or amps, under realistic operating conditions are preferred over assumed loads and or use of manufacturer’s design values.

The process of preparing and documenting your savings estimate can be divided into four basic steps, which are described in detail in the following sections.

Step 1. Process / Measure Description

The importance of providing a detailed description of the process and associated energy saving measure cannot be overstated, since it provides the reviewer with the necessary background information to understand the calculations that follow. Your description should be divided into the following three sections:

1. Existing process/equipment (w/o measure),
2. Proposed new equipment retrofit or enhancement, and
3. Resultant equipment and/or process (post installation).

In each section include sufficient information on the process and equipment involved making it clear to the reviewer how the proposed measure will be implemented and how it will achieve the stated savings. For instance, if energy savings will be achieved using an energy management system (EMS) that implements a new control strategy, then you provide a complete description of the EMS, the existing and proposed control strategies, and the controlled equipment.
Step 2. Establish Baseline Annual Energy Use and Demand

Statewide Customized Offering incentives are based on equipment/improvements that go beyond standard efficiency or “baseline” equipment. “Standard efficiency” refers to equipment that meets either State/Federal efficiency requirements or current industry practice. The baseline for any given project is the standard efficiency or Title 24 requirement for an individual measure. Baseline energy use is established using accepted standards for currently available equipment. For instance, the Energy Policy Act of 1992 established Federal guidelines for electric motor efficiency (See Appendix E for a list of equipment types and applicable standards, or contact your Utility Administrator).

The simplified equation used for the baseline energy use calculation is shown below.

\[\text{Baseline Energy Use (kWh or Therms/year)} = (\text{Op Hours} \times \text{Equipment Load(kW or Therms/hr)})_{\text{base}} \]

Note that it may be necessary to develop a table of equipment loads and the annual operating hours at each load to arrive at an annual energy use estimate (see Appendix E for engineering calculation worksheet).

To obtain the baseline value, it may be necessary to adjust the energy use estimate for the existing equipment to account for “standard equipment” efficiency. For example, a customer that proposes to replace an existing 50-hp motor with a nominal full-load efficiency of 90.2% with a premium efficiency motor having an efficiency of 94.1% must establish the baseline energy using the accepted standard motor efficiency. In this case, the previously mentioned Energy Policy Act of 1992 guideline for a 50-hp motor is 93%. The baseline energy use of the existing motor must therefore be calculated based on the higher 93% efficiency value, which reduces the baseline (and associated savings) value.

The baseline energy use and demand calculations are critical to the savings calculations, so it is important that your calculations and associated descriptions provide sufficient information on the process, equipment and applicable standards to justify the proposed baseline energy use and demand.

Step 3. Establish Post-Installation Annual Energy Use and Demand

The simplified equation used for the post-installation energy use calculation is essentially the same as for the baseline calculation.

\[\text{Post Install Energy Use (kWh or Therms/year)} = (\text{Op Hours} \times \text{Equip Load (kW or Therms/hr)})_{\text{post}} \]

Note that it may be necessary to develop a table of equipment loads and the annual operating hours at each load to arrive at an annual energy use estimate (see engineering calculation worksheet, Appendix E).

While the baseline energy use calculation is based on “standard efficiency” equipment, the post-installation calculation is based on the projected performance of the new equipment or process. Use of simulation software such as Engage, eQUEST, or another DOE2 based software package is acceptable as long as the inputs and associated assumptions (if any) are clearly stated and can be verified. Use of a manufacturer-specific simulation product can be acceptable but will require additional information on the underlying principles used by the software. Again, it is important that your description provide sufficient detail so that the reviewer will understand the basis for your projection. It is important to note that the reviewer has the option of substituting an alternative method of estimating the post-installation energy use and/or may require monitoring to confirm the estimate.

Step 4. Calculate Energy Saving, Demand Savings, and Incentive Amount

Once the baseline and post-installation annual energy use and demand estimates are completed then the savings estimate is simply the difference between the annual baseline and post installation use and demand estimates.
Savings (kWh/year) = Baseline Energy Use - Post-Installation Energy Use

The peak demand savings (kW) are based on the DEER Peak Definition (see section 1.4.8).

The total incentive amount is then calculated by multiplying the savings estimate by the appropriate program incentive multiplier (see Section 1, Table 1-3).

Incentive ($) = program Incentive Multiplier ($/(kWh or Therms)) * Savings (kWh or Therms/year)

Note that the calculated incentive is limited to 50% of the installed measure cost – see Section 1.8.2.
2.4 Measurement & Verification (M&V) Process

The M&V process begins after the Utility Administrator reviews the submitted application and has determined at its sole discretion that an M&V process is appropriate for the proposed project.

The M&V process proceeds as follows:

1. **M&V Requirement Notification.** The Utility Administrator contacts the Project Sponsor and notifies them of the M&V requirement. The Utility Administrator sends the Project Sponsor the Measurement & Verification Guidelines.

2. **M&V Plan Development.** The Project Sponsor develops an M&V plan based on the M&V Guidelines. The Project Sponsor submits the M&V plan, and any required baseline data to the Utility Administrator.

3. **Application and M&V Plan Approval.** If the application and the M&V plan are approved, incentive funding for the project is reserved and the Project Sponsor and Utility Administrator initiate the application approval review.

4. **Project Installation.** For SDG&E and SCE service territories, the Project Sponsor submits a signed Installation Report and invoices after all project measure(s) have been **installed and are fully commissioned and fully operational.** For PG&E service territory, the Project Sponsor notifies the Utility Administrator in writing and submits invoices after all project measure(s) have been **installed and are fully commissioned and fully operational.**

5. **Installation Review.** Upon receipt of Installation Report (SCE and SDG&E), or Installation notification (PG&E), the Reviewer will evaluate the submittal package and conduct a post-installation inspection to verify project installation and ensure the scope of work has not altered from the agreed-upon project.

6. **First Payment.** For SDG&E service territory, the designated Payee receives 60 percent of the Installation Report approved incentive along with an M&V adder, upon approval of the Installation Report.

 For SCE and PG&E service territories, the designated payee receives the 10% M&V adder, to defray the M&V cost, upon approval of the Installation Review.

 The M&V adder is 10% of the IR approved incentive amount, not to exceed $50,000.

7. **Project Performance Period.** The Applicant performs the agreed-upon M&V activities on the new operating equipment for a period up to two years (at discretion of Utility Administrator). At the end of the project performance period, the Project Sponsor submits the Operating Report.

8. **Operating Report.** The Applicant submits the Operating Report and operating data to the Utility Administrator. Upon receipt, the Utility Administrator reviews the report and data.

9. **Final Payment.** For SDG&E service territory, the designated Payee receives the remaining balance of the incentive based on the measured savings upon approval of the Operating Report.

 For SCE and PG&E service territories, 100% of the incentive is paid at the end of the project performance period when the Operating Report is approved.
The energy savings incentive is based on actual performance as indicated by the M&V results.